Continuous flow aerobic granular sludge reactor for dairy wastewater treatment

2015 ◽  
Vol 71 (3) ◽  
pp. 440-445 ◽  
Author(s):  
C. Bumbac ◽  
I. A. Ionescu ◽  
O. Tiron ◽  
V. R. Badescu

The focus of this study was to assess the treatment performance and granule progression over time within a continuous flow reactor. A continuous flow airlift reactor was seeded with aerobic granules from a laboratory scale sequencing batch reactor (SBR) and fed with dairy wastewater. Stereomicroscopic investigations showed that the granules maintained their integrity during the experimental period. Laser diffraction investigation showed proof of new granules formation with 100–500 μm diameter after only 2 weeks of operation. The treatment performances were satisfactory and more or less similar to the ones obtained from the SBR. Thus, removal efficiencies of 81–93% and 85–94% were observed for chemical oxygen demand and biological oxygen demand, respectively. The N-NH+4 was nitrified with removal efficiencies of 83–99% while the nitrate produced was simultaneously denitrified – highest nitrate concentration determined in the effluent was 4.2 mg/L. The removal efficiency of total nitrogen was between 52 and 80% depending on influent nitrogen load (39.3–76.2 mg/L). Phosphate removal efficiencies ranged between 65 and above 99% depending on the influent phosphate concentration, which varied between 11.2 and 28.3 mg/L.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 374
Author(s):  
Hongbo Feng ◽  
Honggang Yang ◽  
Jianlong Sheng ◽  
Zengrui Pan ◽  
Jun Li

Aerobic granular sludge (AGS) with oversized diameter commonly affects its stability and pollutant removal. In order to effectively restrict the particle size of AGS, a sequencing batch reactor (SBR) with a spiny aeration device was put forward. A conventional SBR (R1) and an SBR (R2) with the spiny aeration device treating tannery wastewater were compared in the laboratory. The result indicates that the size of the granular sludge from R2 was smaller than that from R1 with sludge granulation. The spines and air bubbles could effectively restrict the particle size of AGS by collision and abrasion. Nevertheless, there was no significant change in mixed liquor suspended solids (MLSS) and the sludge volume index (SVI) in either bioreactors. The removal (%) of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) in these two bioreactors did not differ from each other greatly. The analysis of biological composition displays that the proportion of Proteobacteria decreased slightly in R2. The X-ray fluorescence (XRF) analysis revealed less accumulation of Fe and Ca in smaller granules. Furthermore, a pilot-scale SBR with a spiny aeration device was successfully utilized to restrict the diameter of granules at about 300 μm.


Author(s):  
Nurazizah Mahmod ◽  
Norhaliza Abdul Wahab

Aerobic Granular Sludge (AGS) technology is a promising development in the field of aerobic wastewater treatment system. Aerobic granulation usually happened in sequencing batch reactors (SBRs) system. Most available models for the system are structurally complex with the nonlinearity and uncertainty of the system makes it hard to predict. A reliable model of AGS is essential in order to provide a tool for predicting its performance. This paper proposes a dynamic neural network approach to predict the dynamic behavior of aerobic granular sludge SBRs. The developed model will be applied to predict the performance of AGS in terms of the removal of Chemical Oxygen Demand (COD). The simulation uses the experimental data obtained from the sequencing batch reactor under three different conditions of temperature (30˚C, 40˚C and 50˚C). The overall results indicated that the dynamic of aerobic granular sludge SBR can be successfully estimated using dynamic neural network model, particularly at high temperature.


2006 ◽  
Vol 53 (9) ◽  
pp. 63-70 ◽  
Author(s):  
X. Wang ◽  
M. Ji ◽  
J.F. Wang ◽  
Z. Liu ◽  
Z.Y. Yang

An unusual phenomenon of anaerobic phosphate uptake under alternating anaerobic/aerobic condition was observed in a granular sludge sequencing batch reactor, fed with acetate as sole organic substrate. Anaerobic phosphate uptake efficiencies remained at 50–70% as the influent P/COD was increased from 2/100 to 4/100, and results showed that anaerobic uptake of phosphate was correlated with anaerobic absorption of acetate. Excluding the main possibility of chemical phosphate removal, it appeared that phosphate uptake during the anaerobic phase was associated with organisms enriched in the reactor. Moreover, results indicated that intracellular glycogen was used as the main energy source of organics anaerobic absorption and intracellular polymers storage. Measuring and analysing the variation of phosphate, organic substrate, intracellular glycogen and pH in the anaerobic phase, a preliminary explanation was developed that anaerobic uptake of phosphate was the demand of intracellular glycogen degradation, and extracellular phosphate was transported to intracellular by pH gradient-sensitive phosphate carrier protein.


2001 ◽  
Vol 43 (3) ◽  
pp. 19-26 ◽  
Author(s):  
T. Etterer ◽  
P. A. Wilderer

A sequencing batch reactor (SBR) was used to investigate the generation of different granules cultured under aerobic and alternating anaerobic/aerobic conditions. The reactor was fed with synthetic wastewater. A substrate loading rate of 3.6 kg COD/ (m3 day) was applied. Granules of heterotrophic microorganisms were formed. After the first experimental period of 8 weeks the average granule diameter was 3.2 mm. In the second period, alternating anaerobic/aerobic conditions were applied to form granular sludge with an average diameter of 3.0 mm. An isopycnic centrifugation procedure was used to determine the characteristic density of the aerobic granular sludge. The average density of the granular sludge was 1.044 g/ml and 1.048 g/ml, respectively. In free-settling tests the final settling velocity of single aggregates was examined to estimate porosity. Settling velocities up to 2.0 cm/s could be measured. Calculations based on the experimental results showed an average granula porosity of 72% for the first run and 65% average porosity for the second run. This paper indicates the validity of general assumptions in free-settling tests.


2011 ◽  
Vol 63 (9) ◽  
pp. 1808-1814 ◽  
Author(s):  
M. Figueroa ◽  
A. Val del Río ◽  
J. L. Campos ◽  
A. Mosquera-Corral ◽  
R. Méndez

Aerobic granular sludge grown in a sequential batch reactor was proposed as an alternative to anaerobic processes for organic matter and nitrogen removal from swine slurry. Aerobic granulation was achieved with this wastewater after few days from start-up. On day 140 of operation, the granular properties were: 5 mm of average diameter, SVI of 32 mL (g VSS)−1 and density around 55 g VSS (Lgranule)−1. Organic matter removal efficiencies up to 87% and nitrogen removal efficiencies up to 70% were achieved during the treatment of organic and nitrogen loading rates (OLR and NLR) of 4.4 kg COD m−3 d−1 and of 0.83 kg N m−3 d−1, respectively. However, nitrogen removal processes were negatively affected when applied OLR was 7.0 kg COD m−3 d−1 and NLR was 1.26 kg N m−3 d−1. The operational cycle of the reactor was modified by reducing the volumetric exchange ratio from 50 to 6% in order to be able to treat the raw slurry without dilution.


2012 ◽  
Vol 518-523 ◽  
pp. 5347-5350
Author(s):  
Jia Xie ◽  
Xiao Xiang Zhao ◽  
Xin Shan Song ◽  
Jun Hu Wei

The successful cultivation of aerobic granular sludge used for simultaneous nitrogen and phosphorus removal in sequencing batch reactor (SBR) was performed using a synthetic domestic wastewater and conventional flocculent activated sludge as seeding sludge. The removal efficiency of sludge for chemical oxygen demand (COD),ammonia nitrogen and phosphate was 92.4%,88.1% and 95.9%, respectively. After screening, a strain was obtained with high efficient in nitrogen and phosphorus removal. By analyzing, the strain was identified as Raoultella ornithinolytica. After strain accumulation, the strain cultured at 30°C for 24h. The ammonia nitrogen and phosphate removal efficiency were 78.3% and 92%, respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 478-484 ◽  
Author(s):  
Feng Deng ◽  
Rui Zhang

The impact of intermittent aeration on aerobic granular sludge in a continuous flow reactor was studied. Nine intermittent aeration modes were set up to investigate the change of DO, pH, COD removal efficiency and SOUR. The results showed DO and pH had different change tendencies. The 3-1 mode was the optimal mode under these experiment conditions. In aerating stage, the highest COD removal efficiency could achieve 96.32%. Stopping aeration for one hour, COD removal efficiency could still reach at 90.20%. This operation mode could save about 25% energy consumption theoretically. The comparison of SOUR between continuous aeration and 4-2 mode showed that the intermittent aeration had little effect on granular sludge activity. The theory of stress & damage and unbalanced growth could explain this appearance.


2015 ◽  
Vol 73 (6) ◽  
pp. 1418-1425 ◽  
Author(s):  
Toni L. Benazzi ◽  
Marco Di Luccio ◽  
Rogério M. Dallago ◽  
Juliana Steffens ◽  
Rúbia Mores ◽  
...  

Dairy industry wastewater contains high levels of organic matter, consisting mainly of fat, protein and products of their partial microbial decomposition. In the present study, the use of continuous electrocoagulation is proposed for the primary treatment of dairy wastewater. The electrochemical treatment was carried out in a continuous flow cell with aluminum electrodes. The influence of the voltage, the distance between the electrodes and the hydraulic residence time (HRT) on the process performance was assessed, by measuring the removal of color, turbidity, total organic carbon (TOC) and chemical oxygen demand (COD). The optimum voltage, distance between the electrodes and HRT were 10 V, 1 cm and 90 min, respectively, yielding a current density of 13.3 A.m−2. Under these conditions, removal of color, turbidity, TOC and COD were 94%, 93%, 65% and 69%, respectively, after a steady state was reached in the continuous flow reactor.


Sign in / Sign up

Export Citation Format

Share Document