Trace organics removal using three membrane bioreactor configurations: MBR, IFAS-MBR and MBMBR

2015 ◽  
Vol 71 (5) ◽  
pp. 761-768 ◽  
Author(s):  
T. de la Torre ◽  
E. Alonso ◽  
J. L. Santos ◽  
C. Rodríguez ◽  
M. A. Gómez ◽  
...  

Seventeen pharmaceutically active compounds and 22 other trace organic pollutants were analysed regularly in the influent and permeate from a semi-real plant treating municipal wastewater. The plant was operated during 29 months with different configurations which basically differed in the type of biomass present in the system. These processes were the integrated fixed-film activated sludge membrane bioreactor (IFAS-MBR), which combined suspended and attached biomass, the moving bed membrane bioreactor (MBMBR) (only attached biomass) and the MBR (only suspended biomass). Moreover, removal rates were compared to those of the wastewater treatment plant (WWTP) operating nearby with conventional activated sludge treatment. Reverse osmosis (RO) was used after the pilot plant to improve removal rates. The highest elimination was found for the IFAS-MBR, especially for hormones (100% removal); this was attributed to the presence of biofilm, which may lead to different conditions (aerobic–anoxic–anaerobic) along its profile, which increases the degradation possibilities, and also to a higher sludge age of the biofilm, which allows complete acclimation to the contaminants. Operating conditions played an important role, high mixed liquor suspended solids (MLSS) and sludge retention time (SRT) being necessary to achieve these high removal rates. Although pharmaceuticals and linear alkylbenzene sulfonates showed high removal rates (65–100%), nonylphenols and phthalate could only be removed to 10–30%. RO significantly increased removal rates to 88% mean removal rate.

2011 ◽  
Vol 63 (4) ◽  
pp. 733-740 ◽  
Author(s):  
E. Sahar ◽  
M. Ernst ◽  
M. Godehardt ◽  
A. Hein ◽  
J. Herr ◽  
...  

The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8–10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin – at an MLSS of 6–9 g/L – showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 421
Author(s):  
Dimitra C. Banti ◽  
Michail Tsangas ◽  
Petros Samaras ◽  
Antonis Zorpas

Membrane bioreactor (MBR) systems are connected to several advantages compared to the conventional activated sludge (CAS) units. This work aims to the examination of the life cycle environmental impact of an MBR against a CAS unit when treating municipal wastewater with similar influent loading (BOD = 400 mg/L) and giving similar high-quality effluent (BOD < 5 mg/L). The MBR unit contained a denitrification, an aeration and a membrane tank, whereas the CAS unit included an equalization, a denitrification, a nitrification, a sedimentation, a mixing, a flocculation tank and a drum filter. Several impact categories factors were calculated by implementing the Life Cycle Assessment (LCA) methodology, including acidification potential, eutrophication potential, global warming potential (GWP), ozone depletion potential and photochemical ozone creation potential of the plants throughout their life cycle. Real data from two wastewater treatment plants were used. The research focused on two parameters which constitute the main differences between the two treatment plants: The excess sludge removal life cycle contribution—where GWPMBR = 0.50 kg CO2-eq*FU−1 and GWPCAS = 2.67 kg CO2-eq*FU−1 without sludge removal—and the wastewater treatment plant life cycle contribution—where GWPMBR = 0.002 kg CO2-eq*FU−1 and GWPCAS = 0.14 kg CO2-eq*FU−1 without land area contribution. Finally, in all the examined cases the environmental superiority of the MBR process was found.


2013 ◽  
Vol 807-809 ◽  
pp. 694-698
Author(s):  
Rong Xin Huang ◽  
Zhen Xing Wang ◽  
Gang Liu ◽  
Qi Jin Luo

In order to guarantee the reliability and security of reclaiming water, research on the removal efficiency of the environmental endocrine chemicals (EDCs) --the Phthalate Esters (PAEs) in conventional secondary activated sludge and wastewater reclamation and reuse process was undergoing at Harbin wastewater treatment plant (WWTP). The wastewater samples were colleted from every unit effluent of WWTP. The results showed that contamination of EDCs were presented in municipal wastewater at Harbin and the concentrations of the four PAEs were 21.01μg/L for Di-n-butyl Phthalate (DBP); 9.63μg/L for Di-n-octyl Phthalate (DnOP); 4.56μg/L for Diethyl Phthalate (DEP); 1.96μg/L for Dimethyl Phthalate (DMP) respectively in the influent. The conventional activated sludge has good removal efficiencies performance on DMP, DEP and DBP. With the increasing of molecular weight and branch chains of PAEs contaminations, the removal rate of the four PAEs in the conventional activated sludge process decreased from 99.82%(DMP),90.60%(DEP),90.10%(DBP) to the only 45.13% removal rate for DnOP, which was mostly removed from primary treatment but no from secondary activated sludge process; Coagulation-air flotation plus filtration process was not a feasible way to remove PAEs from reclaiming treatment units.


2008 ◽  
Vol 57 (3) ◽  
pp. 319-322 ◽  
Author(s):  
A. Pollice ◽  
G. Laera ◽  
D. Saturno ◽  
C. Giordano ◽  
R. Sandulli

Membrane bioreactors allow for higher sludge concentrations and improved degradation efficiencies with respect to conventional activated sludge. However, in the current practice these systems are often operated under sub-optimal conditions, since so far no precise indications have yet been issued on the optimal operating conditions of MBR for municipal wastewater treatment. This paper reports some results of four years of operation of a bench scale membrane bioreactor where steady state conditions were investigated under different sludge retention times. The whole experimental campaign was oriented towards the investigation of optimal process conditions in terms of COD removal and nitrification, biomass activity and growth, and sludge characteristics. The membrane bioreactor treated real municipal sewage, and four different sludge ages were tested (20, 40, 60, and 80 days) and compared with previous data on complete sludge retention. The results showed that the the biology of the system, as assessed by the oxygen uptake rate, is less affected than the sludge physical parameters. In particular, although the growth yield was observed to dramatically drop for SRT higher than 80 days, the biological activity was maintained under all the tested conditions. These considerations suggest that high SRT are convenient in terms of limited excess sludge production without losses of the treatment capacity. Physical characteristics such as the viscosity and the filterability appear to be negatively affected by prolonged sludge retention times, but their values remain within the ranges normally reported for conventional activated sludge.


2008 ◽  
Vol 58 (4) ◽  
pp. 953-956 ◽  
Author(s):  
L. Balest ◽  
G. Mascolo ◽  
C. Di Iaconi ◽  
A. Lopez

The removal of selected endocrine disrupter compounds (EDCs), namely estrone(E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), bisphenol A (BPA) and 4-tert-octylphenol (4t-OP) from municipal wastewater was investigated using a sequencing batch biofilter granular reactor (SBBGR), a new system for biological treatment based on aerobic granular biomass. This new biological treatment is characterized by high biomass concentration (up to 40 g/L), high sludge retention times (up to 6 months) and low sludge production (i.e., an order of magnitude lower than commonly reported for conventional biological technologies). The investigation was carried out comparing a demonstration SBBGR system with a conventional full-scale activated sludge process. Results showed that the SBBGR performed better than a conventional activated sludge process in removing E1, E2, BPA and 4t-OP. In fact, the average removal percentages of the above mentioned EDCs, obtained during a four month operating period, were 62.2, 68, 91.8, 77.9% and 56.4, 36.3, 71.3, 64.6% for the demonstrative SBBGR system and the conventional activated sludge process of the municipal sewage treatment plant, respectively


2014 ◽  
Vol 8 (1) ◽  
pp. 25-29
Author(s):  
Alaa K. Mohammed ◽  
Qusay Fathel ◽  
Safaa A. Ali

A membrane bioreactor (MBR) is one of the modifications to the conventional activated sludge process, since it is the combination of a membrane module and a bioreactor. In the present study, 100 liters lab-scale aerobic MBR was seeded with 1.5 Liter activated sludge and municipal wastewater from AL-Rustumiya municipal wastewater treatment station, two hollow fibers sample (MI,MII) manufactured in the University of Technology/ Chemical Engineering Department, were used as biomembranes. Trans membrane pressure TMP was studied and it was found that the optimum value of TMP was 10 cm Hg vacuum which gave optimum effluent flux 400 ml/hr for MI and 350 ml/hr for MII. The experimental work involves the effect of temperature 25, 35, 45°C on the performance of the MBR fibers sample (MI, MII) and its effect on biomass growth and removal efficiency of the COD, BOD. Both samples show good performance in 25°C.


1996 ◽  
Vol 33 (12) ◽  
pp. 255-258 ◽  
Author(s):  
Olga Burica ◽  
Marjeta Strazar ◽  
Ivan Mahne

The recirculation activated sludge process with preanoxic treatment was applied for biological reduction of the nitrogen content in municipal wastewater at pilot plant level. The pilot plant of total volume 3 300 1 with an initial anoxic to aerobic volume ratio of 40 : 60 was fed with wastewater from the first heavily loaded aerobic stage of a local wastewater treatment plant. Experiments were run over the summer and winter periods, the influent wastewater temperature being approx 24°C and approx 10°C, respectively. Special attention was paid to the hydraulic retention time, the total as well as mineral nitrogen loading, the aerobic to anaerobic volume ratio, and to the energy demand for denitrification of oxidised mineral nitrogen forms. Under optimal operating conditions the effluent quality that could be achieved was about 10 mg/l of total nitrogen (74% removal) and less than 2 mg N/l mineral nitrogen (87% removal), while simultaneously 205 mg BOD5/l in the influent was reduced to less than 7mg O2/l in the effluent. It was found feasible from the pilot plant experiments to upgrade an existing two stage aerobic-anaerobic wastewater treatment plant to reduce nitrogen from the liquid fraction of municipal wastewater so as to meet effluent quality standards without much additional volume and without amending the energy source for bioconversion of oxidised mineral nitrogen to gaseous forms.


2004 ◽  
Vol 50 (5) ◽  
pp. 219-225 ◽  
Author(s):  
H. De Wever ◽  
S. Van Roy ◽  
C. Dotremont ◽  
J. Müller ◽  
T. Knepper

The potential of a membrane bioreactor (MBR) and a conventional activated sludge (CAS) system to remove polar micropollutants was evaluated using linear alkylbenzene sulfonates (LAS) as model components. Removal efficiencies over 97% were achieved in both reactor systems. The appearance of biological breakdown metabolites and the respirometric response of the sludges to LAS addition indicated that LAS removal was due to biodegradation, rather than sorption phenomena. The effect of operational variables, such as hydraulic retention time, LAS composition and hydrophobicity of the membrane used in the MBR, was negligible in the range tested. A stepwise increase in LAS influent concentration resulted in higher residual effluent concentrations but did not change the procentual removal efficiency. Because an increase in LAS and SPC effluent concentration occurred to a larger extent in the CAS than in the MBR under similar operating conditions, MBRs may turn out to be be more robust with respect to biological degradation of micropollutants than CAS.


2014 ◽  
Vol 70 (10) ◽  
pp. 1709-1716 ◽  
Author(s):  
C. Remy ◽  
M. Boulestreau ◽  
B. Lesjean

For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70–80% of total chemical oxygen demand into the sludge while dosing 15–20 mg/L Al and 5–7 mg/L polymer with stable operation of the microsieve and effluent limits below 2–3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.


Sign in / Sign up

Export Citation Format

Share Document