Activated carbons from waste of oil-palm kernel shells, sawdust and tannery leather scraps and application to chromium(VI), phenol, and methylene blue dye adsorption

2015 ◽  
Vol 73 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Sergio Montoya-Suarez ◽  
Fredy Colpas-Castillo ◽  
Edgardo Meza-Fuentes ◽  
Johana Rodríguez-Ruiz ◽  
Roberto Fernandez-Maestre

Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer–Emmett–Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78–82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35–0.37 mg/g, and methylene blue adsorption was 40–110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.

2011 ◽  
Vol 699 ◽  
pp. 245-264 ◽  
Author(s):  
A. Xavier ◽  
J. Gandhi Rajan ◽  
D. Usha ◽  
R Sathya

Methylene blue is a heterocyclic aromatic chemical compound with the molecular formula C16H18N3SCl. It has used in the biology and chemistry field. At room temperature, it appears as a solid, odourless dark green powder that yields blue solution when dissolved in water. As a part of removal of methylene blue dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage of Methylene blue adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbents. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data the modeled with Freundlich and Langmuir isotherms. The first kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and MB is particular. These results are reported highly efficient and effective and low cost adsorbent for the MB. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM photos.


2013 ◽  
Vol 594-595 ◽  
pp. 350-355 ◽  
Author(s):  
Erny Haslina Abd Latib ◽  
Melissa Suraya Mustfha ◽  
Suriati Sufian ◽  
Ku Zilati Ku Shaari

A low cost adsorbent for waste water treatment can be achieved by producing an activated carbon from agriculture waste. In this research work, the activated carbons were prepared from durian shell using the physical and chemical activation at different concentrations of hydrogen peroxide followed by carbonization at high temperature under the flow of nitrogen gas. The produced activated carbon was characterized to obtain the physical and chemical properties. The adsorption of methylene blue dye has been studied in this experiment and the results showed that the efficiency of dye removal was increased for the treated durian shell as compare to the untreated one. It is found that 99% of methylene blue has been removed using durian shell activated carbon (DShAC) that treated at the conditions 0.6M H2O2at 700°C for 30 minutes.


2012 ◽  
Vol 60 (2) ◽  
pp. 185-189 ◽  
Author(s):  
Mohammad Arifur Rahman ◽  
S. M. Ruhul Amin ◽  
A. M. Shafiqul Alam

The possible utilization of rice husk activated carbon as an adsorbent for the removal of methylene blue dye from aqueous solutions has been investigated. In this study, activated carbons, prepared from low-cost rice husk by sulfuric acid and zinc chloride activation, were used as the adsorbent for the removal of methylene blue, a basic dye, from aqueous solutions. Effects of various experimental parameters, such as adsorbent dosage and particle size, initial dye concentration, pH and flow rate were investigated in column process. The maximum uptakes of methylene blue by activated rice husk carbon at optimized conditions (particle sizes: 140 ?m; Flow rate: 1.4 mL/min; pH: 10.0; initial volume of methylene blue: 50 mL and initial concentration of methylene blue: 4.0 mg/L etc.) were found to 97.15%. The results indicate that activated carbon of rice husk could be employed as low-cost alternatives to commercial activated carbon in waste water treatment for the removal of basic dyes. This low cost and effective removal method may provide a promising solution for the removal of crystal violet dye from wastewater.DOI: http://dx.doi.org/10.3329/dujs.v60i2.11491 Dhaka Univ. J. Sci. 60(2): 185-189, 2012 (July)


RSC Advances ◽  
2019 ◽  
Vol 9 (58) ◽  
pp. 34076-34085 ◽  
Author(s):  
Zengxiao Cai ◽  
Rechana Remadevi ◽  
Md Abdullah Al Faruque ◽  
Mohan Setty ◽  
Linpeng Fan ◽  
...  

Dye wastewater has caused severe environmental and health problems. In this work, we have fabricated a novel low-cost membrane with good methylene blue dye adsorption and antibacterial property from naturally sustainable lemongrass (Cymbopogon citratus).


Sign in / Sign up

Export Citation Format

Share Document