Synthesis of [H22·Zr5·WO4·10 P2O7]n·26n H2O by response surface methodology to adsorb Ca(II) in manganiferous wastewater

2016 ◽  
Vol 74 (8) ◽  
pp. 1832-1844
Author(s):  
Huixin Zhang ◽  
Manli Cui ◽  
Xiu-hong Jin ◽  
Xu Han ◽  
Jie Zhang

The presence of calcium challenges the manganese recovery from manganiferous wastewater. In this paper, a kind of mesoporous material named [H22·Zr5·WO4·10 P2O7]n·6n H2O is investigated as an ion exchanger to remove calcium ion from manganese slag percolate. The synthesis of zirconium tungstopyrophosphate (ZWPP) was optimized by response surface methodology , and its adsorption capacity and equilibrium were tested. The adsorption data have been confirmed by the use of various techniques such as Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer, Emmett and Teller. An empirical formula of ZWPP was obtained by X-ray diffraction and thermal analysis. The adsorption process conformed to pseudo-second-order kinetics and the Langmuir isotherm, which described the equilibrium powerfully. Furthermore, different thermodynamic parameters were evaluated. And it was found that Gibbs free energy change is negative, indicating the adsorption process was spontaneous, whereas the enthalpy change and entropy change are positive indicating endothermy and increased randomness nature of the adsorption process. As a result, ZWPP could be a possible ion exchanger material in the area of removing Ca2+ from processing water or wastewater.

Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1370
Author(s):  
Zhenfeng Lin ◽  
Ziwei Pan ◽  
Yuhao Zhao ◽  
Lin Qian ◽  
Jingtao Shen ◽  
...  

PPy-Fe3O4/Kaolin was prepared with polypyrrole functionalized magnetic Kaolin by a simple, green, and low cost method to improve the agglomeration and low adsorption capacity of Kaolin. PPy-Fe3O4/Kaolin was employed to remove Hg2+ and the results were characterized by various methods. Relevant factors, including solution pH, dosage of adsorbent, concentration (C0), and temperature (T), were optimized by Response Surface Methodology (RSM) and Central Composite Designs (CCD). The optimal results show that the importance for adsorption factors is pH > T > C0 > dosage, and the optimal adsorption conditions of PPy-Fe3O4/Kaolin are pH = 7.2, T = 315 K, C0 = 50 mg/L, dosage of 0.05 g/L, and the capacity is 317.1 mg/g. The adsorption process conforms to the pseudo-second-order and Langmuir models. Dubinin–Radushkevich model shows that adsorption process is spontaneous and endothermic. Moreover, the adsorption of mercury by PPy-Fe3O4/Kaolin was achieved mainly through electrostatic attraction, pore diffusion, and chelation between amino functional groups and Hg2+. PPy-Fe3O4/Kaolin has excellent reproducibility, dispersity, and chemical stability, and it is easy to be separated from solution through an external magnetic field. The experiments show that PPy-Fe3O4/Kaolin is an efficient and economical adsorbent towards mercury.


Author(s):  
Xiangyang Zhang ◽  
Xiuli Han ◽  
Chun Chang ◽  
Pan Li ◽  
Hongwei Li ◽  
...  

AbstractActivated carbon derived from raw corncob (CCAC), which prepared with steam as the activating agent, was used to adsorb bisphenol S (BPS) from aqueous solution. Characterizations of CCAC were measured by using the Brunauer-Emmett-Teller, scanning electron microscopy, and Fourier transform infrared spectroscopy. Adsorption conditions including initial BPS concentration, contact time, adsorbent dosage and pH were optimized by response surface methodology (RSM). The results show that adsorption equilibrium was well described by the Langmuir and Koble–Corrigan models. The maximum monolayer adsorption capacity of BPS was found to be 617.29 mg g−1 at 298 K. Based on the thermodynamic parameters analysis, the BPS adsorption process was turned out to be spontaneous and exothermic. The adsorption process of BPS was well described by the pseudo-second-order kinetic model. It also found that H-bonding, π–π interaction, and electrostatic interaction were the main mechanisms in the process of BPS adsorption onto the CCAC.


2021 ◽  
Author(s):  
Rachid EL Kaim Billah ◽  
Savaş Kaya ◽  
Selçuk Şimşek ◽  
El Mahdi Halim ◽  
Mahfoud Agunaou ◽  
...  

Abstract In this work, Fluorapatite has been prepared and successfully applied for the removal of As (VI). The materials prepared have been characterized using X-ray diffraction (XRD), infrared transform transform spectroscopy. Fourier (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Thermogravimetric analysis (TGA) and zero load point pH (pHPZC) were also considered as part of these characterizations. In this work, several parameters affecting the adsorption process were studied, such as: the mass effect, time, pH, and the initial concentration effect. The value of the regression coefficient showed that the data The experimental results corresponded best to the pseudo-second order (PSO) model, while the Langmuir adsorption isotherms best described the equilibrium adsorption data with the highest qm of 43.10 mg / g. Finally, FapC has been successfully reused for more than 5 cycles without significant loss of its sorption capacity.


2021 ◽  
Vol 69 (4) ◽  
pp. 871-904
Author(s):  
Zlate Veličković ◽  
Bogdan Vujičić ◽  
Vladica Stojanović ◽  
Predrag Stojisavljević ◽  
Zoran Bajić ◽  
...  

Introduction/purpose: In this study, we investigated the possibility of removing the organophosphorus pesticide malathion from water using a new adsorbent based on the biowaste of river shell shards from the Anodonta Sinadonta woodiane family, a material that accumulates in large quantities as waste on the banks of large rivers. Two adsorbents were tested - mechanically comminuted river shells (MRM) and mechanosynthetic hydroxyapatite from comminuted river shells (RMHAp). Methods: The obtained adsorbents were characterized and tested for the removal of the organophosphorus pesticide malathion from water. In order to predict the optimal adsorption conditions using the Response Surface Method (RSM), the authors investigated the influence of variable factors (adsorption conditions), pH values, adsorbent doses, contact times, and temperatures on the adsorbent capacity. Results: The best adsorption of malathion was achieved at mean pH values between 6.0 and 7.0. The adsorption data for malathion at 25, 35, and 45 °C were compared using the Langmuir, Freundlich, DubininRadushkevich (DR), and Temkin isothermal models, as well as pseudofirst order, pseudo-second order and Elovic kinetic models for modeling adsorption kinetics. The maximum Langmuir adsorption capacity for MRM and RMHAp at 25 °C was 46,462 mg g-1 and 78,311 mg g-1 , respectively. Conclusion: The results have showed that malathion adsorption on both adsorbents follows the pseudo-second kinetic model and the Freundlich isothermal model. The thermodynamic parameters indicate the endothermic, feasible, and spontaneous nature of the adsorption process.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2016 ◽  
Vol 15 (01n02) ◽  
pp. 1650001 ◽  
Author(s):  
A. Tamilvanan ◽  
K. Balamurugan ◽  
K. Ponappa ◽  
B. Madhan Kumar

Electrolysis is a method used for producing copper (Cu) nanoparticles at faster rate and at low cost in ambient conditions. The property of Cu nanoparticles prepared by electrolysis depends on their process parameters. The influence of selected process parameters such as copper sulfate (CuSo4) concentration, electrode gap and electrode potential difference on particle size was investigated. To optimize these parameters response surface methodology (RSM) was used. Cu nanoparticles prepared by electrolysis were characterized by using X-ray diffraction (XRD) and scanning electron microscope (SEM). After reviewing the results of analysis of variance (ANOVA), mathematical equation was created and optimized parameters for producing Cu nanoparticles were determined. The results confirm that the average size of Cu particle at the optimum condition was found to be 17[Formula: see text]nm and they are hexagonal in shape.


Sign in / Sign up

Export Citation Format

Share Document