scholarly journals Evaluation of microbial fuel cell (MFC) for bioelectricity generation and pollutants removal from sugar beet processing wastewater (SBPW)

2017 ◽  
Vol 77 (2) ◽  
pp. 387-397 ◽  
Author(s):  
Atikur Rahman ◽  
Md Saidul Borhan ◽  
Shafiqur Rahman

AbstractBioelectricity generation from biodegradable compounds using microbial fuel cells (MFCs) offers an opportunity for simultaneous wastewater treatment. This study evaluated the synergy of electricity generation by the MFC while reducing pollutants from sugar beet processing wastewater (SBPW). A simple dual-chamber MFC was constructed with inexpensive materials without using catalysts. Raw SBPW was diluted to several concentrations (chemical oxygen demand (COD) of 505 to 5,750 mg L−1) and fed as batch-mode into the MFC without further modification. A power density of 14.9 mW m−2 as power output was observed at a COD concentration of 2,565 mg L−1. Coulombic efficiency varied from 6.21% to 0.73%, indicating diffusion of oxygen through the cation exchange membrane and other methanogenesis and fermentation processes occurring in the anode chamber. In this study, >97% of the COD and up to 100% of the total suspended solids removals were observed from MFC-treated SBPW. Scanning electron microscopy of anode indicated that a diverse community of microbial consortia was active for electricity generation and wastewater treatment. This study demonstrated that SBPW can be used as a substrate in the MFC to generate electricity as well as to treat for pollutant removal.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 761
Author(s):  
Wenli Xu ◽  
Biao Jin ◽  
Shaofeng Zhou ◽  
Yanyan Su ◽  
Yifeng Zhang

The occurrence of Triclosan (TCS) in natural aquatic systems has been drawing increasing attention due to its endocrine-disruption effects as well as for the development of antibiotic resistances. Wastewater discharge is the main source of water contamination by TCS. In this study, the removal of TCS in microbial fuel cells (MFCs) was carefully investigated. A 94% removal of TCS was observed with 60 mV electricity generation as well as a slight drop in pH. In addition, we found that adsorption also contributed to the removal of TCS in aqueous solution and 21.73% and 19.92% of the total mass was adsorbed to the inner wall of the reactor and to the electrode, respectively. The results revealed that the attenuation of TCS depends on both biodegradation and physical adsorption in the anode chamber. Thus, the outcomes of our study provide a better understanding of the TCS removal mechanism in MFCs.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1289
Author(s):  
Madiha Tariq ◽  
Jin Wang ◽  
Zulfiqar Ahmad Bhatti ◽  
Muhammad Bilal ◽  
Adeel Jalal Malik ◽  
...  

Microbial fuel cells (MFCs) are a recent biotechnology that can simultaneously produce electricity and treat wastewater. As the nature of industrial wastewater is very complex, and it may contain a variety of substrates—such as carbohydrates, proteins, lipids, etc.—previous investigations dealt with treatment of individual pollutants in MFCs; the potential of acetic acid, sucrose, albumin, blood, and their mixture has rarely been reported. Hence, the current investigation explored the contribution of each substrate, both separately and in mixture. The voltage generation potential, current, and power density of five different substrates—namely, acetic acid, sucrose, albumin, blood, and a mixture of all of the substrates—was tested in a dual-chambered, anaerobic MFC operated at 35 °C. The reaction time of the anaerobic batch mode MFC was 24 h, and each substrate was treated for 7 runs under the same conditions. The dual-chambered MFC consisted of anode and cathode chambers; the anode chamber contained the biocatalyst (sludge), while the cathode chamber contained the oxidizing material (KMnO4). The maximum voltage of 769 mV was generated by acetic acid, while its corresponding values of current and power density were 7.69 mA and 347.85 mW, respectively. Similarly, being a simple and readily oxidizable substrate, acetic acid exhibited the highest COD removal efficiency (85%) and highest Coulombic efficiency (72%) per run. The anode accepted the highest number of electrons (0.078 mmol/L) when acetic acid was used as a substrate. The voltage, current, and power density generated were found to be directly proportional to COD concentration. The least voltage (61 mV), current (0.61 mA), and power density (2.18 mW) were observed when blood was treated in the MFC. Further research should be focused on testing the interaction of two or more substrates simultaneously in the MFC.


2012 ◽  
Vol 66 (4) ◽  
pp. 748-753 ◽  
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Haein Cho ◽  
Jieun Chun ◽  
Jiyun Seon ◽  
...  

Microbial fuel cells (MFCs) can convert chemical energy to electricity using microbes as catalysts and a variety of organic wastewaters as substrates. However, electron loss occurs when fermentable substrates are used because fermentation bacteria and methanogens are involved in electron flow from the substrates to electricity. In this study, MFCs using glucose (G-MFC), propionate (P-MFC), butyrate (B-MFC), acetate (A-MFC), and a mix (M-MFC, glucose:propionate:butyrate:acetate = 1:1:1:1) were operated in batch mode. The metabolites and microbial communities were analyzed. The current was the largest electron sink in M-, G-, B-, and A-MFCs; the initial chemical oxygen demands (CODini) involved in current production were 60.1% for M-MFC, 52.7% for G-MFC, 56.1% for B-MFC, and 68.3% for A-MFC. Most of the glucose was converted to propionate (40.6% of CODini) and acetate (21.4% of CODini) through lactate (80.3% of CODini) and butyrate (6.1% of CODini). However, an unknown source (62.0% of CODini) and the current (34.5% of CODini) were the largest and second-largest electron sinks in P-MFC. Methane gas was only detected at levels of more than 10% in G- and M-MFCs, meaning that electrochemically active bacteria (EAB) could out-compete acetoclastic methanogens. The microbial communities were different for fermentable and non-fermentable substrate-fed MFCs. Probably, bacteria related to Lactococcus spp. found in G-MFCs with fermentable substrates would be involved in both fermentation and electricity generation. Acinetobacter-like species, and Rhodobacter-like species detected in all the MFCs would be involved in oxidation of organic compounds and electricity generation.


2015 ◽  
Vol 74 (3) ◽  
Author(s):  
S. M. Zain ◽  
N. L. Ching ◽  
S. Jusoh ◽  
S. Y. Yunus

The aim of this study is to identify the relationship between the rate of electricity generation and the rate of carbon and nitrogen removal from wastewater using different MFC processes.  Determining whether the generation of electricity using MFC process could be related to the rate of pollutant removal from wastewater is noteworthy. Three types of MFC process configurations include the batch mode (SS), a continuous flow of influent with ferricyanide (PF) as the oxidizing agent and a continuous flow of influent with oxygen (PU) as the oxidizing agent. The highest quantity of electricity generation was achieved using the continuous flow mode with ferricyanide (0.833 V), followed by the continuous flow mode with oxygen (0.589 V) and the batch mode (0.352 V). The highest efficiency of carbon removal is also achieved by the continuous flow mode with ferricyanide (87%), followed by the continuous flow mode with oxygen (51%) and the batch mode (46%). Moreover, the continuous flow mode with ferricyanide produced the highest efficiency for nitrogen removal (63%), followed by the continuous flow mode with oxygen (54%) and the batch mode (27%).


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Mohammad Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Kumar Biswas

Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.


2014 ◽  
Author(s):  
◽  
Shashikanth Gajaraj

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Much attention has been drawn by bioelectrochemical systems (BES) in the past years for wastewater treatment, due to its potential for enhanced wastewater treatment and resource recovery with added advantages in terms of energy generation, environmental footprint, operating stability and economics. This dissertation focuses on the potential to improve treatment efficiency of different wastewater components when assisted by BES. Modified Ludzack-Ettinger (MLE) process and membrane bioreactor (MBR) process assisted by microbial fuel cells (MFC) showed improved the nitrate-nitrogen removal efficiencies by upto 31% and 20% respectively, and reduced sludge produced by 11% and 6% respectively over the control reactors. While the unique design of the cathode significantly reduced physical membrane fouling, all other bioreactor performance was unaffected. Microbial electrolysis cell (MEC) assisted Cr[VI] reduction was faster in 60 days as compared to 69 days with MFC assisted systems and 85 days with the control. The total Cr removal efficiencies in the control system and the MFC or MEC-assisted systems were 20%, 55%, and 65%, respectively, demonstrating the ability of BES in assisting wastewater remediation process. Finally, MECs incorporated into anaerobic digestion resulted in increased production of methane of 9.4 % or 8.5% with both glucose and activated sludge respectively as the substrate. The integration of MEC had no impact on acetoclastic methanogens involved in anaerobic digestion, but significantly increased the populations of hydrogenotrophic methanogens, especially Methanobacteriales. In conclusion, the integration of BES with conventional wastewater treatment and sludge digestion process enhanced the removal of organic matter, nitrate and toxic metals while supporting healthy microbial consortia.


Sign in / Sign up

Export Citation Format

Share Document