scholarly journals Advanced nitrogen removal from municipal wastewater treatment plant secondary effluent using a deep bed denitrification filter

2018 ◽  
Vol 77 (11) ◽  
pp. 2723-2732 ◽  
Author(s):  
Xiaowei Zheng ◽  
Shenyao Zhang ◽  
Jibiao Zhang ◽  
Deying Huang ◽  
Zheng Zheng

Abstract With the improvement of wastewater discharge standards, wastewater treatment plants (WWTPs) are continually undergoing technological improvements to meet the evolving standards. In this study, a quartz sand deep bed denitrification filter (DBDF) was used to purify WWTP secondary effluent, utilizing high nitrate nitrogen concentrations and a low C/N ratio. Results show that more than 90% of nitrate nitrogen (NO3-N) and 75% of chemical oxygen demand (COD) could be removed by the 20th day of filtration. When the filter layer depth was set to 1,600 mm and the additional carbon source CH3OH was maintained at 30 mg L−1 COD (20 mg L−1 methanol), the total nitrogen (TN) and COD concentrations of DBDF effluent were stabilized below 5 and 30 mg L−1, respectively. Analysis of fluorescence revealed that DBDF had a stronger effect on the removal of dissolved organic matter (DOM), especially of aromatic protein-like substances. High throughput sequencing and qPCR results indicate a distinctly stratified microbial distribution for the main functional species in DBDF, with quartz sand providing a good environment for microbes. The phyla Proteobacteria, Bacteroidetes, and Chloroflexi were found to be the dominant species in DBDF.

2020 ◽  
Vol 81 (4) ◽  
pp. 732-743
Author(s):  
Daniela Gomes ◽  
Mafalda Cardoso ◽  
Rui C. Martins ◽  
Rosa M. Quinta-Ferreira ◽  
Lícinio M. Gando-Ferreira

Abstract Wastewater treatment plants are not specially designed to remove pharmaceutically active compounds (PhACs), since these substances are toxic and bio-refractory. This paper aims to investigate and optimize the performance of the Trisep TS80 nanofiltration (NF) membrane for the removal of a mixture of two of the most detected PhACs in municipal wastewaters worldwide, sulfamethoxazole and diclofenac. Several NF tests were carried out to study the rejections of these contaminants both spiked in demineralized water, filtrated water taken from Mondego River and secondary effluent coming from a municipal wastewater treatment plant. Among the several studied operating variables, pH was the one that most affected the contaminant rejection and membrane permeability. In the case of synthetic effluent, an applied pressure of 10 bar and pH 7 were determined as the best operating conditions, which allowed almost total chemical oxygen demand retention and a global contaminant rejection of 96.3% to be achieved. The application of different water matrices (river water and secondary municipal effluent) had no relevant impact on process efficiency. Vibrio fischeri luminescence inhibition tests revealed that treatment by nanofiltration reduced acute toxicity of all studied effluents.


1994 ◽  
Vol 30 (4) ◽  
pp. 125-132 ◽  
Author(s):  
D. Carnimeo ◽  
E. Contini ◽  
R. Di Marino ◽  
F. Donadio ◽  
L. Liberti ◽  
...  

The pilot investigation on the use of UV as an alternative disinfectant to NaOCI was started in 1992 at Trani (South Italy) municipal wastewater treatment plant (335 m3/h). The results collected after six months continuous operation enabled us to compare UV and NaOCl disinfection effectiveness on the basis of secondary effluent characteristics, quantify photoreactivation effects, evidence possible DBP formation and assess costs.


2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


2013 ◽  
Vol 9 (2) ◽  
pp. 166-173

The present study investigated tertiary physico-chemical treatment of the secondary effluent from the Chania municipal Wastewater Treatment Plant (WTP). Laboratory experiments were carried out with the aim of studying coagulation efficiency regarding reduction of turbidity, soluble COD and phosphorus both in a conventional Coagulation-Settling treatment scheme, as well as by means of Contact Filtration. The results showed that high doses of coagulants (0,5 mmol Me+3 l-1 or higher) are required to achieve significant removals of turbidity after settling. At these high doses, soluble COD can be removed by about 50%, while soluble Phosphorus by 80-95%. Ferric Chloride demonstrated slightly better removal ability as compared to Alum. The Chania WTP effluent was also treated by Contact Filtration, using a very low dose of coagulants, 0,1 mmol Me+3 l-1. Turbidity was removed by around 50%, while at this low coagulant dose removals of COD and Phosphorus were insignificant. Filtration was effective in the first 35cm of the filter bed. No significant differences were observed between the coagulants Alum and FeCl3 in the elimination of turbidity. Nevertheless, with the use of Alum a smaller filter headloss was observed, during the first two hours of continuous filtration, in comparison with the use of FeCl3 (nearly double). No difference was observed between the headloss developed at a filter depth of 5cm as compared to that developed at a depth of 70cm. This indicates that the headloss increase was due to the accumulation of suspended and colloidal solids within the first layers of the sand filter.


2021 ◽  
Vol 11 (5) ◽  
pp. 2207
Author(s):  
Diana Pacheco ◽  
A. Cristina S. Rocha ◽  
Analie Garcia ◽  
Ana Bóia ◽  
Leonel Pereira ◽  
...  

The need to reduce the costs associated with microalgae cultivation encouraged scientific research into coupling this process with wastewater treatment. Thus, the aim of this work was to assess the growth of Chlorella vulgaris (Chlorophyta) in different effluents from a municipal wastewater treatment plant (WWTP), namely secondary effluent (SE) and sludge run-off (SR). Assays were performed, under the same conditions, in triplicate with 4 dilution ratios of the wastewaters (25%, 50%, 75% and 100%) with the standard culture medium bold basal medium double nitrated (BBM2N) as a control. The capability of C. vulgaris for biomass production, chlorophyll synthesis and nutrients removal in the SE and SR was evaluated. The 25% SE and 25% SR showed increased specific growth rates (0.47 and 0.55 day−1, respectively) and higher biomass yields (8.64 × 107 and 1.95 × 107 cells/mL, respectively). Regarding the chlorophyll content, the 100% SR promoted the highest concentration of this pigment (2378 µg/L). This green microalga was also able to remove 94.8% of total phosphorus of SE, while in 50% SR, 31.2% was removed. Removal of 73.9% and 65.9% of total nitrogen in 50% and 100% SR, respectively, was also observed. C. vulgaris growth can, therefore, be maximized with the addition of municipal effluents, to optimize biomass production, while cleansing the effluents.


2017 ◽  
Vol 19 (3) ◽  
pp. 130-135
Author(s):  
Anna Ciaciuch ◽  
Jerzy Gaca ◽  
Karolina Lelewer

Abstract The research presents the changes in chemical oxygen demand (COD) fractions during the two-stage thermal disintegration and anaerobic digestion (AD) of sewage sludge in municipal wastewater treatment plant (WWTP). Four COD fractions have been separated taking into account the solubility of substrates and their susceptibility to biodegradation: inert soluble organic matter SI, readily biodegradable substrate SS, slowly biodegradable substrates XS and inert particulate organic material XI. The results showed that readily biodegradable substrates SS (46.8% of total COD) and slowly biodegradable substrates XS (36.1% of total COD) were dominant in the raw sludge effluents. In sewage effluents after two-stage thermal disintegration, the percentage of SS fraction increased to 90% of total COD and percentage of XS fraction decreased to 8% of total COD. After AD, percentage of SS fraction in total COD decreased to 64%, whereas the percentage of other fractions in effluents increased.


Sign in / Sign up

Export Citation Format

Share Document