scholarly journals Facile synthesis of superhydrophobic MS/TiO2/PDMS sponge for efficient oil-water separation

Author(s):  
Juxiang Yang ◽  
Xueying Yang ◽  
Yuan Jia ◽  
Beibei Li ◽  
Qi Shi

Abstract In order to obtain a kind of superhydrophobic sponge with high oil and water selectivity, the MS/TiO2/PDMS sponge were prepared via a two-step hydrophobic fabrication based on the melamine sponge (MS), tetrabutyl titanate (TBOT) and polydimethylsiloxane (PDMS). The effects of modification time, the concentrations of TBOT and PDMS on the properties of the MS/TiO2/PDMS sponge were studied, and the separation mechanism was also discussed based on the interaction between the oil and the surface of the MS/TiO2/PDMS sponge. The results suggest that under optimal conditions, the MS/TiO2/PDMS sponge show superhydrophobicity. The contact angle and adsorption capacity for oil of the MS/TiO2/PDMS sponge are 149.2° and 98.5 g·g−1, respectively, and they can be recycled about 25 cycles after oil-water separation test. This study aims at preparing a new composite material with high oil-water selectivity, which lays a good foundation for the development and research of new oil adsorbent.

RSC Advances ◽  
2015 ◽  
Vol 5 (66) ◽  
pp. 53802-53808 ◽  
Author(s):  
Jian Li ◽  
Long Yan ◽  
Haoyu Li ◽  
Jianping Li ◽  
Fei Zha ◽  
...  

Superhydrophobic attapulgite coated mesh was used to separate oil/water mixtures efficiently. Besides, the separation mechanism was elaborated by interpreting the different states of water droplet on the surface before and during separation.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


2019 ◽  
Vol 11 (11) ◽  
pp. 11006-11027 ◽  
Author(s):  
Chaolang Chen ◽  
Ding Weng ◽  
Awais Mahmood ◽  
Shuai Chen ◽  
Jiadao Wang

Author(s):  
Yu Li ◽  
Shengke Yang ◽  
Yangyang Chen ◽  
Dan Zhang

The hydrophobicity and anti-fouling properties of materials have important application value in industrial and agricultural production and people’s daily life. To study the relationship between the unit width L0 of the parabolic hydrophobic material and the hydrophobicity and anti-fouling properties, the rough surface structure of the parabolic with different widths was prepared by grinding with different SiC sandpapers, and further, to obtain hydrophobic materials through chemical oxidation and chemical etching, and modification with stearic acid (SA). The morphology, surface wetting and anti-fouling properties of the modified materials were characterized by SEM and contact angle measurement. The oil–water separation performance and self-cleaning performance of the materials were explored. The surface of the modified copper sheet forms a rough structure similar to a paraboloid. When ground with 1500 grit SiC sandpaper, it is more conducive to increase the hydrophobicity of the copper sheet surface and increase the contact angle of water droplets on the copper surface. Additionally, the self-cleaning and anti-fouling experiments showed that as L0 decreases, copper sheets were less able to stick to foreign things such as soil, and the better the self-cleaning and anti-fouling performance was. Based on the oil–water separation experiment of copper mesh, the lower L0 has a higher oil–water separation efficiency. The results showed that material with parabolic morphology has great self-cleaning, anti-fouling, and oil–water separation performance. The smaller the L0 was, the larger the contact angle and the better hydrophobic performance and self-cleaning performance were.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1378
Author(s):  
Teng Yuan ◽  
Jian Yin ◽  
Yingling Liu ◽  
Weiping Tu ◽  
Zhuohong Yang

A novel micro/nanoscale rough structured superhydrophilic hybrid-coated mesh that shows underwater superoleophobic behavior is fabricated by spray casting or dipping nanoparticle–polymer suspensions on stainless steel mesh substrates. Water droplets can spread over the mesh completely; meanwhile, oil droplets can roll off the mesh at low tilt angles without any penetration. Besides overcoming the oil-fouling problem of many superhydrophilic coatings, this superhydrophilic and underwater superoleophobic mesh can be used to separate oil and water. The simple method used here to prepare the organic–inorganic hybrid coatings successfully produced controllable micro-nano binary roughness and also achieved a rough topography of micro-nano binary structure by controlling the content of inorganic particles. The mechanism of oil–water separation by the superhydrophilic and superoleophobic membrane is rationalized by considering capillary mechanics. Tetraethyl orathosilicate (TEOS) as a base was used to prepare the nano-SiO2 solution as a nano-dopant through a sol-gel process, while polyvinyl alcohol (PVA) was used as the film binder and glutaraldehyde as the cross-linking agent; the mixture was dip-coated on the surface of 300-mesh stainless steel mesh to form superhydrophilic and underwater superoleophobic film. Properties of nano-SiO2 represented by infrared spectroscopy and surface topography of the film observed under scanning electron microscope (SEM) indicated that the film surface had a coarse micro–nano binary structure; the effect of nano-SiO2 doping amount on the film’s surface topography and the effect of such surface topography on hydrophilicity of the film were studied; contact angle of water on such surface was tested as 0° by the surface contact angle tester and spread quickly; the underwater contact angle to oil was 158°, showing superhydrophilic and underwater superoleophobic properties. The effect of the dosing amount of cross-linking agent to the waterproof swelling property and the permeate flux of the film were studied; the oil–water separation effect of the film to oil–water suspension and oil–water emulsion was studied too, and in both cases the separation efficiency reached 99%, which finally reduced the oil content to be lower than 50 mg/L. The effect of filtration times to permeate flux was studied, and it was found that the more hydrophilic the film was, the stronger the stain resistance would be, and the permeate flux would gradually decrease along with the increase of filtration times.


2020 ◽  
Vol 10 (5) ◽  
pp. 1409-1419 ◽  
Author(s):  
Bo Ge ◽  
Hang Yang ◽  
Xiaochen Xu ◽  
Guina Ren ◽  
Xingchuan Zhao ◽  
...  

2021 ◽  
pp. 004051752110569
Author(s):  
Long Feng ◽  
Yimiao Hou ◽  
Qingqing Hao ◽  
Mingxing Chen ◽  
Shuo Wang ◽  
...  

The deterioration of water ecology caused by the discharge of oil spill wastewater, industrial sewage, and municipal sewage has attracted wide attention worldwide. Thus, it is significant to design a simple, environmentally friendly approach to separate oil–water mixtures. In this work, three different fabrics with pH-induced wettability transition were prepared by a dip-coating process for oil and water separation. The dip-coating fabrics had the advantages of oil–water separation, photocatalytic degradation, and recycling. Polyethylene terephthalate/polyamide nonwoven fabric was used as the substrate materials of the fabric. The carboxylic acid-modified TiO2 endowed the fabric with hydrophilicity–hydrophobicity and photocatalytic properties. The Fe3O4 nanoparticles obtained by the coprecipitation method provided magnetism for the fabric, facilitating the recycling of the fabric and improving the hydrophobicity of the fabric. The fabrics coated with dipping solutions were superhydrophobic in a neutral environment and hydrophilic in an alkaline environment. Among the three coated fabrics, the fabric coated with stearic acid/TiO2-Fe3O4 (FST) had the most satisfying oil–water separation performance and durability. Under the neutral condition, the contact angle of the FST was 151° and the separation efficiency was 98%. Under the alkaline condition, the underwater oil contact angle of the FST was 150° and the separation efficiency was 95%. After 15 cycles, the oil–water separation rate of the FST was still higher than 90%. Due to the presence of TiO2, the coated fabric had an exceptional performance in the photodegradation of organic pollutants (69.9%). In addition, the fabrics can be quickly recovered due to magnetism.


Sign in / Sign up

Export Citation Format

Share Document