scholarly journals Urban Occupation Increases Water Toxicity of an Important River in Central Brazil

Author(s):  
Elisa Flávia Luiz Cardoso Bailão ◽  
Leciana de Menezes Sousa Zago ◽  
Nathan Carvalho Silva ◽  
Karine Borges Machado ◽  
Patrícia Lima D'Abadia ◽  
...  

Meia Ponte River supplies water for two million people in Goiás State, Brazil. Despite its importance, the Meia Ponte River faces serious environmental problems such as the disposal of domestic and industrial effluents, what could impact the aquatic biota and the health of people who consumes its water. In this sense, here we aimed to evaluate the environmental quality and toxicity of surface water along the course of this river. Physicochemical analyses of water at Goiânia urban perimeter were higher than the limits of Brazil environmental regulations for fresh water. In relation to the diversity of species, phytoplankton classes associated to polluted environments were detected closer to urban perimeter. Allium cepa bioassay suggested that this river may contain substances with mitogenic activity. This result is in accordance with genotoxic analysis, because it was observed a significant increase in chromosomal aberrations. This data reveal the genotoxic potential of Meia Ponte River water. This genotoxicity represents a risk for aquatic biota and humans, once the genotoxic agents in water samples might cause the loss of DNA integrity, inducing damages and DNA breaks. In this context, the water utilization from Meia Ponte River without any treatment should be avoided and public policies need to be formulated and implemented to depollute this important river for Goiás State.

2014 ◽  
Vol 13 (2) ◽  
pp. 600-606 ◽  
Author(s):  
M. R. Mahmoudi ◽  
E. Nazemalhosseini-Mojarad ◽  
B. Kazemi ◽  
A. Haghighi ◽  
A. Mirzaei ◽  
...  

Little is known about the diversity and public health significance of Cryptosporidium species in river waters in Iran. In the present study, we determined the genotype and subtype distribution of Cryptosporidium spp. in river water samples in Iran. A total of 49 surface water samples were collected from rivers and surface water in Guilan and Tehran provinces during 2009–2010. Water samples were filtrated through a 1.2-μm pore size membrane filter or by Filta-Max filter followed by immunomagnetic separation or sucrose purification methods. Genotype and subtype of Cryptosporidium were identified by sequence analysis of the 18S rRNA and 60 kDa glycoprotein (gp60) genes, respectively. A total of 24 (48.97%) water samples were positive for Cryptosporidium species by the 18sRNA-based polymerase chain reaction (PCR)-sequencing technique. DNA sequencing revealed the presence of five species of Cryptosporidium (C. parvum, C. hominis, C. muris, C. andersoni, and C. canis) in the water samples of the study area and, to our knowledge, the first report of C. muris in Iran. The results of GP60 gene analysis showed that all C. parvum and C. hominis isolates belonged to the IId and Id subtype families, respectively. The investigated river water supplies were heavily contaminated by pathogenic species of Cryptosporidium from humans and livestock. There is potential risk of waterborne cryptosporidiosis in humans and animals.


Author(s):  
Kai Chen ◽  
Linhua Sun

The δ2H and δ18O values in water bodies are essential to the management of water resources because of the ability to insight into hydrological processes. In this study, we have measured and analyzed the major ions (Na+, K+, Ca2+, Mg2+, Cl–, SO24– and HCO–3 ) and stable H-O isotopes (δ2H and δ18O) for fifteen surface water samples collected from the Xinbian River in Suzhou, northern Anhui Province, China. The results show that all of the water samples are classified to be Na-HCO3 type, and the mean values of δ2H and δ18O are –42.93‰ and –5.36‰, respectively. Gibbs diagram and the relationship between δ2H and δ18O indicate that both water chemistry and stable isotopes in river water are mainly controlled by evaporation. Correlation analysis reveals that a significant correlation between major ions and δ18O. Predictors (K+, SO24– and HCO–3 ) have been selected by optimal subset regression analysis were used to model the δ18O values in the river water. Moreover, the residuals of the model were normally distributed and values between –0.2‰ to 0.2‰ for most water samples, suggesting a strong relationship between the observed and predicted δ18O values.


2020 ◽  
Author(s):  
Navjot Kaur ◽  
Susanta Paikaray

<p>Groundwater and Sutlej river water are major sources of irrigation in Rupnagar district of Punjab. Water quality was examined for their agricultural suitability using a total of 54 surface water (16 from Sutlej and 6 from Sirsa River) and groundwater (total 32 of ~160 m depth) samples from Pre- (June 2019) and post-monsoon (Dec 2018) seasons. On-site parameters (electrical conductivity, pH, total dissolved solids) indicate permissible pH (pH 6.6-8.2) and conductivity (147-1953 μS/cm), while 18.5% of samples are brackish salt to salt category type on salinity index. The results of these parameters were further interpreted and measured with different irrigation indexes like sodium percent (SP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), chloride concentrations and Wilcox diagram. Similarly, most of the samples (except Sutlej river water samples) were found to be above permissible limits with respect to SP (5.36-81.01) and RSC (0-6.23), but SAR is indicative of suitability for irrigation purposes (0.11-8.3). The suitability for irrigation as per SAR is because of low sodium content in all the samples relative to calcium and magnesium. The Wilcox diagram of pre-monsoon samples indicate high, medium and low saline to low sodium hazard except 1 sample with high saline to medium sodium hazard and salinity-sodium hazard in post-monsoon is comparatively lower than that of pre-monsoon. However careful observation of the complete data analysis suggests that all the parameters in Sutlej river water samples were found to be suitable for irrigation while most of the groundwater samples and 3 samples from Sirsa river were unfit for irrigation purposes as inferred from SP, RSC and Wilcox diagram.</p>


2004 ◽  
Vol 70 (10) ◽  
pp. 5937-5946 ◽  
Author(s):  
Mark A. Borchardt ◽  
Nathaniel L. Haas ◽  
Randall J. Hunt

ABSTRACT Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.


2021 ◽  
Vol 24 (1) ◽  
pp. 29-36
Author(s):  
Ni Luh Gede Ratna Juliasih ◽  
Diky Hidayat ◽  
Purna Pirdaus ◽  
Rinawati Rinawati

Method verification for metal analysis (Cd, Cr, Cu, Ni, Co, and Mn) in surface water using Inductively Coupled Plasma (ICP) was carried out to evaluate the method’s performance in the laboratory-based on US Method EPA 200.7. The verified method is used to determine the metal content in river water flowing in Bandar Lampung. The results showed that the method used had good linearity with a regression coefficient of more than 0.995. This method’s accuracy is expressed by the %RSD (relative standard deviation), which is in the range of 3.145 to 4.345% and meets the acceptance requirements with a %RSD value less than ⅔ CV Horwitz. The method accuracy obtained from the spiking analysis gives a range of 80-110% for the analysis of 1 mg/L and meets the acceptability required by AOAC. Overall, the performance of the method used is suitable for the analysis of metals in surface water. This method was applied for metal analysis in river water samples in several places in Bandar Lampung, which were the Palang Besi river (A1), the Way Balau Kedamaian river (B1), the Way Balau Kedaton river (C1), the Way Kuala river (D1), the Sumur Batu Kahuripan river (E1), Sumur Putri river (F1), and Muara Kahuripan river (G1). The concentrations of Cd, Cr, Cu, Ni, and Co metals were under the LoD method, while the Mn concentration was above the LoD method in river water samples.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Gaurav Sharma ◽  
Renu Lata ◽  
Nandini Thakur ◽  
Vishal Bajala ◽  
Jagdish Chandra Kuniyal ◽  
...  

AbstractThe present study is an attempt to accomplish the understanding of the factors impacting Parbati river water quality in Kullu district of Himachal Pradesh. The main objective is to assess the overall water quality, to explore its hydrogeochemical characteristics including major ion contents and other chemical parameters using Water Quality Index (WQI), statistical techniques (principal component analysis) and conventional graphical representation such as Piper trilinear diagram, Durov. Eighteen surface water samples were collected from different altitudinal sites to analyze physico-chemical parameters for June 2019 and September 2019. Analytical outcomes of thirty-six surface water samples collected in Pre-monsoon and Post-monsoon seasons are well within the permissible limits as per BIS, 2012 and WHO 2011 for drinking and domestic purposes. Water quality characterization for the assigned use shows that maximum surface water samples fall under excellent to good water quality index and are suitable for drinking without conventional treatment. The Piper trilinear diagram classified 100% of surface water samples for both seasons’ falls in the fields of Ca2+-Mg2+-HCO3− water type indicating temporary hardness. Abundance of ions in the water samples is in the order: anions HCO3−>Cl−>SO42−>NO3− and cations Mg2+>Ca2+>Na+>K+. PCA identifies that the surface water chemistry is influenced by natural factors as well as minor anthropogenic activities in both the seasons. The correlation matrix has been prepared to analyse and observe the significance of the factors on the assessment of river water quality. Periodic assessment of surface water samples of the Parbati river and adjoining areas should be carried out. This approach will help in finding out any contamination of water occurring due to rapid socio-economic development as well as explosion of tourism industry in the region. Present study will work as baseline database for any future work in the region.


2021 ◽  
Vol 12 (1-2) ◽  
pp. 57-65
Author(s):  
MT Arefin ◽  
MM Rahman

An attempt was made to evaluate the contamination status of surface water collected from the Balu river for irrigation. Twenty samples were collected to analyze pH, EC, TDS and ions. Samples were slightly alkaline in nature. Water samples were from low to medium salinity and low alkalinity hazards (C1S1-C2S1). As per TDS values, samples were classified as freshwater. Considering SAR and SSP values, samples were excellent and good to permissible classes, respectively. Most of the water samples were free from RSC and all the samples were under moderately hard. The status of Cr and Mn ions in samples surpassed FAO guideline values indicating contaminants for long-term irrigation. The levels of other metal ions in samples were within acceptable levels and did not pose a threat to irrigated soil. This finding revealed that Cr and Mn ions were considered as contaminants in river water for irrigation posing harmful impact on soils and crops. Environ. Sci. & Natural Resources, 12(1&2): 57-65, 2019


2012 ◽  
Vol 66 (12) ◽  
pp. 2772-2778 ◽  
Author(s):  
Eva Valušová ◽  
Anna Vandžurová ◽  
Peter Pristaš ◽  
Marián Antalík ◽  
Peter Javorský

Recent efforts in water purification have led to the development of novel materials whose unique properties can offer effective biocidal capabilities with greater ease of use and at lower cost. In this study, we introduce a novel procedure for the preparation of activated carbon (charcoal) composite in which magnetite and silver are incorporated (MCAG); we also describe the use of this material for the disinfection of surface water. The formation process of magnetic MCAG composite was studied using ultraviolet-visible spectroscopy. The results demonstrated the high sorption efficiency of AgNO3 to magnetic activated carbon. The antimicrobial capabilities of the prepared MCAG were examined and the results clearly demonstrate their inhibitory effect on total river water bacteria and on Pseudomonas koreensis and Bacillus mycoides cultures isolated from river water. The bacterial counts in river water samples were reduced by five orders of magnitude following 30 min of treatment using 1 g l−1 of MCAG at room temperature. The removal of all bacteria from the surface water samples implies that the MCAG material would be a suitable disinfectant for such waters. In combination with its magnetic character, MCAG would be an excellent candidate for the simple ambulatory disinfection of surface water.


2018 ◽  
Vol 6 (2) ◽  
pp. 214 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker ◽  
Md. Emam Mehedi Masud ◽  
Mir. Mohammad Ali

Toxic metal contamination is a major problem globally, especially in developing countries. In this study, the levels of toxic metals such as Cr, Ni, Cu, As, Cd and Pb in surface water and sediment of Korotoa River of Bogra City, Bangladesh were investigated. The average concentration of Cr, Ni, Cu, As, Cd and Pb in studied sediment were 1.01, 0.89, 1.98, 6.02, 0.0054 and 0.469 mg/kg, respectively. In the water sample, the mean concentration of Cr, Ni, Cu, As, Cd and Pb were 1.13, 1.33, 3.02, 2.62, 0.75 and 0.81 mg/kg, respectively. A huge amount of municipal wastes, industrial effluents and agricultural runoff from the periphery of Bogra City notably are dumped to this river. Most of the effluents channeled into these rivers are not treated. Considering the sampling sites, the decreasing order of total metal concentration in water samples were Cu > As > Ni > Cr > Pb > Cd and in sediment were As > Cu > Cr> Ni > Pb > Cd. Total average concentrations of Cr, Ni, Cu, As, Cd and Pb in the water samples were higher than WHO guidelines for drinking water quality. This contamination level implied that the condition is much frightening and probably severely affecting the aquatic ecology of the river.  


Sign in / Sign up

Export Citation Format

Share Document