scholarly journals Development of algorithms of self-organizing network for reliable data exchange between autonomous robots

Dependability ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 35-42
Author(s):  
A. V. Ermakov ◽  
L. I. Suchkova

Factors affecting the reliability of data transmission in networks with nodes with periodic availability were considered. The principles of data transfer between robots are described; the need for global connectivity of communications within an autonomous system is shown, since the non-availability of information on the intentions of other robots reduces the effectiveness of the robotics system as a whole and affects the fault tolerance of a team of independent actors performing distributed activities. It is shown that the existing solutions to the problem of data exchange based on general-purpose IP networks have drawbacks; therefore, as the basis for organizing autonomous robot networks, we used developments in the domain of topological models of communication systems allowing us to build self-organizing computer networks. The requirements for the designed network for reliable message transfer between autonomous robots are listed, the option of organizing reliable message delivery using overlay networks, which expand the functionality of underlying networks, is selected. An overview of existing popular controlled and non-controlled overlay networks is given; their applicability for communication within a team of autonomous robots is evaluated. The features and specifics of data transfer in a team of autonomous robots are listed. The algorithms and architecture of the overlay self-organizing network were described by means of generally accepted methods of constructing decentralized networks with zero configurations. As a result of the work, general principles of operation of the designed network were proposed, the message structure for the delivery algorithm was described; two independent data streams were created, i.e. service and payload; an algorithm for sending messages between network nodes and an algorithm for collecting and synchronizing the global network status were developed. In order to increase the dependability and fault tolerance of the network, it is proposed to store the global network status at each node. The principles of operation of a distributed storage are described. For the purpose of notification on changes in the global status of the network, it is proposed to use an additional data stream for intra-network service messages. A flood routing algorithm was developed to reduce delays and speed up the synchronization of the global status of a network and consistency maintenance. It is proposed to provide network connectivity using the HELLO protocol to establish and maintain adjacency relations between network nodes. The paper provides examples of adding and removing network nodes, examines possible scalability problems of the developed overlay network and methods for solving them. It confirms the criteria and indicators for achieving the effect of self-organization of nodes in the network. The designed network is compared with existing alternatives. For the developed algorithms, examples of latency estimates in message delivery are given. The theoretical limitations of the overlay network in the presence of intentional and unintentional defects are indicated; an example of restoring the network after a failure is set forth.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo-yong Park ◽  
Seok-Jun Hong ◽  
Sofie L. Valk ◽  
Casey Paquola ◽  
Oualid Benkarim ◽  
...  

AbstractThe pathophysiology of autism has been suggested to involve a combination of both macroscale connectome miswiring and microcircuit anomalies. Here, we combine connectome-wide manifold learning with biophysical simulation models to understand associations between global network perturbations and microcircuit dysfunctions in autism. We studied neuroimaging and phenotypic data in 47 individuals with autism and 37 typically developing controls obtained from the Autism Brain Imaging Data Exchange initiative. Our analysis establishes significant differences in structural connectome organization in individuals with autism relative to controls, with strong between-group effects in low-level somatosensory regions and moderate effects in high-level association cortices. Computational models reveal that the degree of macroscale anomalies is related to atypical increases of recurrent excitation/inhibition, as well as subcortical inputs into cortical microcircuits, especially in sensory and motor areas. Transcriptomic association analysis based on postmortem datasets identifies genes expressed in cortical and thalamic areas from childhood to young adulthood. Finally, supervised machine learning finds that the macroscale perturbations are associated with symptom severity scores on the Autism Diagnostic Observation Schedule. Together, our analyses suggest that atypical subcortico-cortical interactions are associated with both microcircuit and macroscale connectome differences in autism.


Author(s):  
Srinivasa P. Varanasi ◽  
Athamaram H. Soni

Abstract Data exchange between different CAD systems usually requires conversion between different representations of free-form curves and surfaces. Also, trimmed surfaces give rise to high degree boundary curves. Accurate conversion of these forms becomes necessary for reliable data transfer. Also important is the issue of shape control, specially in the aircraft industry. The objective of this paper is to investigate conversion methods and effect of shape control on the design and choice of such methods.


2021 ◽  
Vol 21 (4) ◽  
pp. 1-23
Author(s):  
Bin Yuan ◽  
Chen Lin ◽  
Deqing Zou ◽  
Laurence Tianruo Yang ◽  
Hai Jin

The rapid development of the Internet of Things has led to demand for high-speed data transformation. Serving this purpose is the Tactile Internet, which facilitates data transfer in extra-low latency. In particular, a Tactile Internet based on software-defined networking (SDN) has been broadly deployed because of the proven benefits of SDN in flexible and programmable network management. However, the vulnerabilities of SDN also threaten the security of the Tactile Internet. Specifically, an SDN controller relies on the network status (provided by the underlying switches) to make network decisions, e.g., calculating a routing path to deliver data in the Tactile Internet. Hence, the attackers can compromise the switches to jeopardize the SDN and further attack Tactile Internet systems. For example, an attacker can compromise switches to launch distributed denial-of-service attacks to overwhelm the SDN controller, which will disrupt all the applications in the Tactile Internet. In pursuit of a more secure Tactile Internet, the problem of abnormal SDN switches in the Tactile Internet is analyzed in this article, including the cause of abnormal switches and their influences on different network layers. Then we propose an approach that leverages the messages sent by all switches to identify abnormal switches, which adopts a linear structure to store historical messages at a relatively low cost. By mapping each flow message to the flow establishment model, our method can effectively identify malicious SDN switches in the Tactile Internet and thus enhance its security.


1993 ◽  
Vol 47 (8) ◽  
pp. 1093-1099 ◽  
Author(s):  
Antony N. Davies ◽  
Peter Lampen

Following the development and publication of the JCAMP-DX protocol 4.24 and its successful implementation in the field of infrared spectroscopy, data exchange without loss of information, between systems of different origin and internal format, has become a reality. The benefits of this system-independent data transfer standard have been recognized by workers in other areas who have expressed a wish for an equivalent, compatible standard in their own fields. This publication details a protocol for the exchange of Nuclear Magnetic Resonance (NMR) spectral data without any loss of information and in a format that is compatible with all storage media and computer systems. The protocol detailed below is designed for spectral data transfer, and its use for NMR imaging data transfer has not as yet been investigated.


2018 ◽  
Vol 7 (4.1) ◽  
pp. 4
Author(s):  
Kamal Jadidy Aval ◽  
Masumeh Damrudi

The WSN deployment problem is addressed in this paper. The problem applies to the monitored areas with different detection needs at different points. In this problem, every point of the terrain is assigned with a predefined minimum probability of event detection. The objective is providing the best position for the network nodes and at the same time assuring event detection, detection message delivery, and reducing deployment cost. We have formulated the problem as an optimization problem with three objectives, which is NP-complete. Because of the huge solution space for the problem and the exponential computational complexity, none of the exact methods known yet can solve the problem unless for a pretty small scaled case. To battle the complexity of the solution, a new scalable solution is proposed based on imperialist competitive algorithm namely imperialist competitive deployment algorithm (ICDA). We compare the proposal to the related deployment strategies, and the results show that ICDA outperforms them.  


Author(s):  
Hoang Dang Hai ◽  
Thorsten Strufe ◽  
Pham Thieu Nga ◽  
Hoang Hong Ngoc ◽  
Nguyen Anh Son ◽  
...  

Sparse  Wireless  Sensor  Networks  using several  mobile  nodes  and  a  small  number  of  static sensor  nodes  have  been  widely  used  for  many applications,  especially  for  traffic-generated  pollution monitoring.  This  paper  proposes  a  method  for  data collection and forwarding using Mobile Elements (MEs), which are moving on predefined trajectories in contrast to previous works that use a mixture of MEsand static nodes. In our method, MEscan be used as data collector as well as dynamic bridges for data transfer. We design the  trajectories  in  such  a  way,  that  they  completely cover  the  deployed  area  and  data  will  be  gradually forwarded  from  outermost  trajectories  to  the  center whenever  a  pair  of MEs contacts  each  other  on  an overlapping road distance of respective trajectories. The method  is based  on  direction-oriented  level  and  weight assignment.  We  analyze  the  contact  opportunity  for data  exchange  while MEs move.  The  method  has  been successfully tested for traffic pollution monitoring in an urban area.


2017 ◽  
Vol 10 (1) ◽  
pp. 82-85
Author(s):  
Vikram Agrawal

MANET is self organizing, decentralized and dynamic network. In which participating nodes can move anywhere. The nodes can be host or router anytime [1]. Mobile ad hoc network is decentralized network so if one node is participating as router for particular time but if that node leave network then it is very difficult to transfer data packets. The main feature of MANET network of self organizing capability of node has advantage and disadvantage as well. By this it is easy to maintain network and convert topology but at same time we need to tolerate data transfer. The MANET is also used for big network and internet but there is no smart objects like IoT which can share information machine to machine. Now rapidly increase internet users worldwide to access global information and technology [2]. IoT is basically used to converge applications and services to open global business opportunities which can use I-GVC (Information-driven Global Value Chain) for efficient productivity.


2007 ◽  
Vol 5 (2) ◽  
pp. 151-172 ◽  
Author(s):  
A. Ganguly ◽  
A. Agrawal ◽  
P. O. Boykin ◽  
R. J. Figueiredo

Sign in / Sign up

Export Citation Format

Share Document