A study of work and improve of water content in PEMFC with liquid cooling

Author(s):  
Konstantin V. Agapov ◽  
Dmitriy O. Dunikov ◽  
Kirill D. Kuzmin ◽  
Evgeniy V. Stoyanov

In this publication, in addition to focusing on the engineering component in creating our own test bench for trying various modes and the overall performance of solid polymer fuel cells with electric power of more than 2 kW, the features of the result of the operation of a liquid-cooled fuel cell in the field of heat transfer are displayed. It is known that its performance and service life depend on a properly tuned water and thermal balance of the fuel cell. The problem area is described in the insufficient moisture content of the supplied air to the fuel cell and the excess heat in the fuel cell. In this case, the negative consequence is that additional resistance to the rate of the electrochemical reaction is created, as a result of which the generated power decreases. A possible way to solve this problem is proposed: so, according to the heat balance equation, by increasing the temperature difference between the incoming and outgoing heat carrier, more heat energy can be removed. The temperature difference was achieved using a water-air radiator. The increased removal of thermal energy allowed the condensation of part of the moisture inside the fuel cell, maintaining the humidity and conductivity of the membrane, but not allowing flooding of the channels with liquid water, which otherwise could lead to a decrease in performance. During the tests, it was possible to increase the removed power by 321 w, which is 8.4% in excess of the maximum power. Based on the obtained experimental results, dependencies were constructed that are expressed by the current-voltage characteristic, power curve, the amount of heat removed by the water from the fuel cell, and a graph of the change in water temperature at the inlet and outlet of the fuel cell at various stages of operation.

2001 ◽  
Vol 3 (2) ◽  
pp. 73-80 ◽  
Author(s):  
H. Dohle ◽  
A.A. Kornyshev ◽  
A.A. Kulikovsky ◽  
J. Mergel ◽  
D. Stolten

Author(s):  
Ivan Vasyukov ◽  

Static and dynamic computer models of fuel cells are considered. A static model is determined that most ac-curately reproduces the current-voltage characteristic of a real fuel cell. A method for tuning it according to the experimental I - V characteristic by the least squares method is proposed. A method for its adjustment ac-cording to the experimental I - V characteristic by the method of gradient descent is proposed. A modified elec-trical equivalent circuit of a fuel cell has been developed, which simulates its dynamic response, taking into ac-count the damping effect of eddy currents during operation of a stack of fuel cells on a pulse voltage converter. A method is proposed for determining the parameters of the model from the experimental oscillograms of the current and voltage of the stack. A universal model of a stack of fuel cells in LTspice has been developed, which makes it possible to simulate a dynamic response and, if necessary, simulate a real static I – V characteristic of the stack.


2021 ◽  
Vol 66 (5) ◽  
pp. 773-776
Author(s):  
A. G. Ivanova ◽  
N. N. Gubanova ◽  
O. A. Zagrebelnyy ◽  
E. L. Krasnopeeva ◽  
I. Yu. Kruchinina ◽  
...  

Author(s):  
Vanessa Paladini ◽  
Teresa Donateo ◽  
Arturo de Risi ◽  
Domenico Laforgia

In the last decades, due to emission reduction policies, research focused on alternative powertrains among which electric vehicles powered by fuel cells are becoming an attractive solution. The main issues of these vehicles are the energy management system and the overall fuel economy. An overview of the existing solutions with respect to their overall efficiency is reported in the paper. On the bases of the literature results, the more efficient powertrain scheme has been selected. The present investigation aims at identifying the best control strategy to power a vehicle with both fuel cell and battery to reduce fuel consumption. The optimization of the control strategy is achieved by using a genetic algorithm. To model the powertrain behavior, an on purpose made simulation program has been developed and implemented in MATLAB/SIMULINK. In particular, the fuel cell model is based on the theory of Amphlett et al. (1995, “Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. II. Empirical Model Development,” J. Electrochem. Soc., 142(1)) whereas the battery model also accounts for the charge/discharge efficiency. The analyzed powertrain is equipped with an energy recovery system. During acceleration, power is demanded to the storage system, while during deceleration the battery is recharged. All the tested control strategies assume charge sustaining operation for the battery and that the fuel cell system has to work around its maximum efficiency. All the tested strategies have been validated on four driving cycles.


Author(s):  
Pei-Wen Li ◽  
Laura Schaefer ◽  
Qing-Ming Wang ◽  
Minking K. Chyu

A numerical model is presented in this work to compute the inter-dependent fields of flow, temperature and the concentrations of multiple gases in a single tubular solid oxide fuel cell (SOFC) system. It was supposed that the fuel gas supplied to the fuel cell is from a pre-reformer and thus contains hydrogen and proportions of carbon monoxide, carbon dioxide, steam, and methane. The model takes mixture gas properties of the fuel and oxidant as functions of the numerically obtained local temperature, pressure and species concentrations, which are inter-dependent and intimately related to the electrochemical reaction in the SOFC. In the iterative computation steps, local electrochemical parameters were simultaneously calculated based on the local parameters of pressure, temperature, and concentration of the species available at each step. Upon the convergence of the computation, both local details and the overall performance of the fuel cell could be obtained. The numerical results obtained are helpful for better understanding of the operation of SOFCs.


Sign in / Sign up

Export Citation Format

Share Document