Development of an Undergraduate Course Designed to Increase Hands- On Research Opportunities for Students at Colorado State University

HAPS Educator ◽  
2018 ◽  
pp. 150-158
Author(s):  
Leslie M. Stone-Roy
1992 ◽  
Vol 21 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Daniel More ◽  
Charles L. Ralph

At Colorado State University we designed an experiment wherein approximately half of a class of 184 students in a semester, first-year biology class was placed in a traditional hands-on, experiential laboratory for two hours per week and the other half was placed in a facility with Macintosh computers to view courseware for the same time period. Computer-presented tutorial and simulation of biology laboratory concepts proved to be as good as or better than traditional approaches in increasing student academic performance. The courseware-using group performed better ( p < 0.05) than the traditional laboratory group in overall lecture examination scores, when the pretest scores of the two groups were factored in. Curiously, attitudes in regard to the use of the courseware showed a striking negative trend in this experiment.


Author(s):  
L. S. Chumbley ◽  
M. Meyer ◽  
K. Fredrickson ◽  
F.C. Laabs

The Materials Science Department at Iowa State University has developed a laboratory designed to improve instruction in the use of the scanning electron microscope (SEM). The laboratory makes use of a computer network and a series of remote workstations in a classroom setting to provide students with increased hands-on access to the SEM. The laboratory has also been equipped such that distance learning via the internet can be achieved.A view of the laboratory is shown in Figure 1. The laboratory consists of a JEOL 6100 SEM, a Macintosh Quadra computer that acts as a server for the network and controls the energy dispersive spectrometer (EDS), four Macintosh computers that act as remote workstations, and a fifth Macintosh that acts as an internet server. A schematic layout of the classroom is shown in Figure 2. The workstations are connected directly to the SEM to allow joystick and computer control of the microscope. An ethernet connection between the Quadra and the workstations allows students seated there to operate the EDS. Control of the microscope and joystick is passed between the workstations by a switch-box assembly that resides at the microscope console. When the switch-box assembly is activated a direct serial line is established between the specified workstation and the microscope via the SEM’s RS-232.


2008 ◽  
Vol 12 (3) ◽  
Author(s):  
Maria Jean Puzziferro ◽  
Kaye Shelton

As the demand for online education continues to increase, institutions are faced with developing process models for efficient, high-quality online course development. This paper describes a systems, team-based, approach that centers on an online instructional design theory (Active Mastery Learning) implemented at Colorado State University-Global Campus.


Synlett ◽  
2021 ◽  
Vol 32 (02) ◽  
pp. 140-141
Author(s):  
Louis-Charles Campeau ◽  
Tomislav Rovis

obtained his PhD degree in 2008 with the late Professor Keith Fagnou at the University of Ottawa in Canada as an NSERC Doctoral Fellow. He then joined Merck Research Laboratories at Merck-Frosst in Montreal in 2007, making key contributions to the discovery of Doravirine (MK-1439) for which he received a Merck Special Achievement Award. In 2010, he moved from Quebec to New Jersey, where he has served in roles of increasing responsibility with Merck ever since. L.-C. is currently Executive Director and the Head of Process Chemistry and Discovery Process Chemistry organizations, leading a team of smart creative scientists developing innovative chemistry solutions in support of all discovery, pre-clinical and clinical active pharmaceutical ingredient deliveries for the entire Merck portfolio for small-molecule therapeutics. Over his tenure at Merck, L.-C. and his team have made important contributions to >40 clinical candidates and 4 commercial products to date. Tom Rovis was born in Zagreb in former Yugoslavia but was largely raised in southern Ontario, Canada. He earned his PhD degree at the University of Toronto (Canada) in 1998 under the direction of Professor Mark Lautens. From 1998–2000, he was an NSERC Postdoctoral Fellow at Harvard University (USA) with Professor David A. Evans. In 2000, he began his independent career at Colorado State University and was promoted in 2005 to Associate Professor and in 2008 to Professor. His group’s accomplishments have been recognized by a number of awards including an Arthur C. Cope Scholar, an NSF CAREER Award, a Fellow of the American Association for the Advancement of Science and a ­Katritzky Young Investigator in Heterocyclic Chemistry. In 2016, he moved to Columbia University where he is currently the Samuel Latham Mitchill Professor of Chemistry.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 197-198
Author(s):  
Miguel A Sánchez-Castro ◽  
Milt Thomas ◽  
Mark Enns ◽  
Scott Speidel

Abstract First-service conception rate (FSCR) can be defined as the probability of a heifer conceiving in response to her first artificial insemination (AI). Given the binary nature of its phenotypes, FSCR has been typically evaluated using animal threshold models (ATM). However, susceptibility of these models to the extreme-category problem (ECP) limits their ability to use all available information to calculate Expected Progeny Differences (EPD). Random regression models (RRM) represent an alternative method to evaluate binary traits, and they are not affected by ECP. Nevertheless, RRM were originally developed to analyze longitudinal traits, so their usefulness to evaluate traits with singly observed phenotypes remains unclear. Therefore, objectives herein were to evaluate the feasibility of a RRM genetic prediction for heifer FSCR by comparing its resulting EPD and genetic parameters to those obtained with a traditional ATM. Breeding and ultrasound records of 4,334 Angus heifers (progeny of 354 sires and 1,626 dams) collected between 1992 to 2019 at the Colorado State University Beef Improvement Center were utilized. Observations for FSCR (1, successful; 0, unsuccessful) were defined by fetal age at pregnancy inspections performed approximately 130 d post-AI. Traditional FSCR evaluation was performed using a univariate BLUP threshold animal model, whereas an alternative evaluation was performed by regressing FSCR on age at AI using a linear RRM with Legendre Polynomials as the base function. Heritability estimates were 0.03 ± 0.02 for the ATM and 0.005 ± 0.001 for the average age at AI with the RRM, respectively. Pearson and rank correlations between EPD obtained with each method were 0.63 and 0.60, respectively. The regression coefficient of RRM predictions on those obtained with the ATM was 0.095. In conclusion, these results suggested that although a RRM genetic prediction for FSCR was feasible, a considerable degree of re-ranking occurred between the two methodologies.


2021 ◽  
Vol 32 (4) ◽  
pp. 151-157
Author(s):  
Raven A. Bough ◽  
Phillip Westra ◽  
Todd A. Gaines ◽  
Eric P. Westra ◽  
Scott Haley ◽  
...  

The authors discuss the importance of wheat as a global food source and describe a novel multi-institutional, public-private partnership between Colorado State University, the Colorado Wheat Research Foundation, and private chemical and seed companies that resulted in the development of a new herbicide-resistant wheat production system.


Sign in / Sign up

Export Citation Format

Share Document