scholarly journals Assessment of Methane Emissions – Impact of Using Natural Gas Engines in Unconventional Resource Development

2018 ◽  
Author(s):  
Andrew Nix ◽  
Derek Johnson ◽  
Robert Heltzel ◽  
Dakota Oliver
2014 ◽  
Author(s):  
Derek Johnson ◽  
April Covington

The American Gas Association (AGA) and the United States (US) Energy Information Administration (EIA) report that natural gas reserves, production, and consumption are increasing. Current estimates show over 100 years worth of recoverable reserves. As production increases, the natural gas pipeline interstate will grow or at least experience increased throughput. With the industry expanding at rapid rates and the high global warming potential of methane (21 over a 100 year period), it is important to identify potential sources for reductions in fugitive methane emissions. This research group conducted leak and loss audits at five natural gas compressor station and storage facilities. The majority of methane losses were associated with the operation of the lean-burn, natural gas engines (open crankcases, exhaust), compressor seal vents, and open liquid storage tanks. This paper focuses on the potential reduction in fugitive methane emissions of the discovered industry weaknesses through application of various proven technologies. As engines are not perfectly sealed, blow-by of intake air, fuel, and combustion gases occurs past the piston rings. In order to prevent a build-up of pressure within the crankcase, it must be vented. Diesel engines have lower hydrocarbon emissions from their crankcases due to the short duration of fuel addition after compression of the intake charge. Lean-burn, natural gas engines, like conventional gasoline engines, compress both the fuel and intake air during the compression stroke. During the 1960s, many passenger vehicles adopted positive crankcase ventilation (PCV) or closed crankcase ventilation (CCV) systems to reduce significantly hydrocarbon emissions from engines. Currently, some heavy-duty on-road engines still have open crankcase systems and most off-road engines have crankcases simply vented to the atmosphere. In this paper, researchers will examine the potential reduction in methane emissions that could be realized with the installation of retrofitted CCV systems at these locations. In addition to the reduction of methane losses from the crankcase, it is realized that with proper plumbing, flow control, and safety parameters, all of the losses typically vented to atmosphere could be ducted into the engine intake for combustion. Preliminary results show that applications of closed crankcase systems could reduce emissions from these sites by 1–11% while modifying these systems to include the losses from compressor seal vents and storage tanks could yield potential reductions in methane emissions by 10–57%.


Author(s):  
Jonathan J. Buonocore ◽  
Joan A. Casey ◽  
Rachel Croy ◽  
John D. Spengler ◽  
Lisa McKenzie

In their study “Assessing Agreement in Exposure Classification between Proximity-Based Metrics and Air Monitoring Data in Epidemiology Studies of Unconventional Resource Development” Hess et al [...]


2021 ◽  
pp. 118105
Author(s):  
Andoni Choya ◽  
Sylwia Gudyka ◽  
Beatriz de Rivas ◽  
Jose Ignacio Gutiérrez-Ortiz ◽  
Andrzej Kotarba ◽  
...  

2014 ◽  
Vol 49 (1) ◽  
pp. 641-648 ◽  
Author(s):  
David T. Allen ◽  
David W. Sullivan ◽  
Daniel Zavala-Araiza ◽  
Adam P. Pacsi ◽  
Matthew Harrison ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 498-503
Author(s):  
La Xiang ◽  
Yu Ding

Natural gas (NG) is one of the most promising alternative fuels of diesel and petrol because of its economics and environmental protection. Generally the NG engine share the similar structure profile with diesel or petrol engine but the combustion characteristics of NG is varied from the fuels, so the investigation of NG engine combustion process receive more attentions from the researchers. In this paper, a zero-dimensional model on the basis of Vibe function is built in the MATLAB/SIMULINK environment. The model provides the prediction of combustion process in natural gas engines, which has been verified by the experimental data in the NG test bed. Furthermore, the influence of NG composition on engine performance is investigated, in which the in-cylinder maximum pressure and temperature and mean indicated pressure are compared using different type NG. It is shown in the results that NG with higher composition of methane results in lower maximum temperature and mean indicated pressure as well as higher maximum pressure.


Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 119466
Author(s):  
J.J. López ◽  
R. Novella ◽  
J. Gomez-Soriano ◽  
P.J. Martinez-Hernandiz ◽  
F. Rampanarivo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document