scholarly journals A Detailed Vehicle Simulation Process to Support CAFE Standards for the MY 2024–2026 Analysis

2021 ◽  
Author(s):  
Ehsan Islam ◽  
Ayman Moawad ◽  
Namdoo Kim ◽  
Ram Vijayagopal ◽  
Aymeric Rousseau
2021 ◽  
Vol 12 (4) ◽  
pp. 222
Author(s):  
Zirui Ding ◽  
Junping Xiang

This paper reviews the development of vehicle road collaborative simulation in the new era, and summarizes the simulation characteristics of two core technologies in the field of transportation after entering the era of Intelligent Networking: Internet of Vehicles technology and automatic driving technology. This paper analyzes and compares the mainstream Internet of Vehicles (IoV) simulation and automatic driving simulation platforms on the market, deeply analyzes the model-based IoV simulation, and explores a new mode of IoV simulation in the era of big data. According to the latest classification standard of automatic driving in 2020, we summarize the simulation process of automatic driving. Finally, we offer suggestions on the development directions of intelligent network-connected vehicle simulation.


2001 ◽  
Vol 29 (4) ◽  
pp. 258-268 ◽  
Author(s):  
G. Jianmin ◽  
R. Gall ◽  
W. Zuomin

Abstract A variable parameter model to study dynamic tire responses is presented. A modified device to measure terrain roughness is used to measure dynamic damping and stiffness characteristics of rolling tires. The device was used to examine the dynamic behavior of a tire in the speed range from 0 to 10 km/h. The inflation pressure during the tests was adjusted to 160, 240, and 320 kPa. The vertical load was 5.2 kN. The results indicate that the damping and stiffness decrease with velocity. Regression formulas for the non-linear experimental damping and stiffness are obtained. These results can be used as input parameters for vehicle simulation to evaluate the vehicle's driving and comfort performance in the medium-low frequency range (0–100 Hz). This way it can be important for tire design and the forecasting of the dynamic behavior of tires.


2018 ◽  
Vol 28 ◽  
pp. 35-42
Author(s):  
David Black ◽  
Bryan Found ◽  
Doug Rogers

Forensic Document Examiners (FDEs) examine the physical morphology and performance attributes of a line trace when comparing questioned to specimen handwriting samples for the purpose of determining authorship. Along with spatial features, the elements of execution of the handwriting are thought to provide information as to whether or not a questioned sample is the product of a disguise or simulation process. Line features such as tremor, pen-lifts, blunt beginning and terminating strokes, indicators of relative speed, splicing and touch ups, are subjectively assessed and used in comparisons by FDEs and can contribute to the formation of an opinion as to the validity of a questioned sample of handwriting or signatures. In spite of the routine use of features such as these, there is little information available regarding the relative frequency of occurrence of these features in populations of disguised and simulated samples when compared to a large population of a single individual’s signature. This study describes a survey of the occurrence of these features in 46 disguised signatures, 620 simulated signatures (produced by 31 different amateur forgers) and 177 genuine signatures. It was found that the presence of splices and touch-ups were particularly good predictors of the simulation process and that all line quality parameters were potentially useful contributors in the determination of the authenticity of questioned signatures. Purchase Article - $10


Author(s):  
Seyed Kourosh Mahjour ◽  
Antonio Alberto Souza Santos ◽  
Manuel Gomes Correia ◽  
Denis José Schiozer

AbstractThe simulation process under uncertainty needs numerous reservoir models that can be very time-consuming. Hence, selecting representative models (RMs) that show the uncertainty space of the full ensemble is required. In this work, we compare two scenario reduction techniques: (1) Distance-based Clustering with Simple Matching Coefficient (DCSMC) applied before the simulation process using reservoir static data, and (2) metaheuristic algorithm (RMFinder technique) applied after the simulation process using reservoir dynamic data. We use these two methods as samples to investigate the effect of static and dynamic data usage on the accuracy and rate of the scenario reduction process focusing field development purposes. In this work, a synthetic benchmark case named UNISIM-II-D considering the flow unit modelling is used. The results showed both scenario reduction methods are reliable in selecting the RMs from a specific production strategy. However, the obtained RMs from a defined strategy using the DCSMC method can be applied to other strategies preserving the representativeness of the models, while the role of the strategy types to select the RMs using the metaheuristic method is substantial so that each strategy has its own set of RMs. Due to the field development workflow in which the metaheuristic algorithm is used, the number of required flow simulation models and the computational time are greater than the workflow in which the DCSMC method is applied. Hence, it can be concluded that static reservoir data usage on the scenario reduction process can be more reliable during the field development phase.


2020 ◽  
Vol 1626 ◽  
pp. 012128
Author(s):  
Huaichu Dai ◽  
Gang Lv ◽  
Wenjin Huang ◽  
Qiang Qin
Keyword(s):  

Author(s):  
Chongchong Li ◽  
Jiangyong Xiong ◽  
Tingshan Liu ◽  
Ziang Zhang

In order to further improve vehicle ride performance, a dynamic monitoring feedback iteration control algorithm is proposed by combining the features of a variable-damping semi-active suspension system and applying them to the system. A seven-degree-of-freedom finished vehicle simulation model is built based on MATLAB/Simulink. The root-mean-square values of the acceleration of the sprung mass, the dynamic travel of the suspension and the dynamic tire load are taken as evaluation indicators of vehicle ride performance. An analytic hierarchy process (AHP) is used to determine the weighting coefficients of the evaluation indicators, and a genetic algorithm is utilized to determine the optimal damping of the suspension under various typical working conditions. Suspension damping is controlled with a dynamic monitoring feedback iteration algorithm. The correction coefficients of the control algorithm are determined according to the deviation between the obtained damping and the optimized damping so that the control parameters will agree with the optimal result under typical working conditions, and the control effect under other working conditions is verified. The simulation results indicate that the proposed dynamic monitoring feedback iteration control algorithm can effectively reduce the root-mean-square value of the acceleration of the sprung mass by 10.56% and the root-mean-square value of the acceleration of the dynamic travel of the suspension by 11.98% under mixed working conditions, thus improving vehicle ride performance. The study in this paper provides a new attempt for damping control of semi-active suspension and lays a theoretical foundation for its application in engineering.


RSC Advances ◽  
2021 ◽  
Vol 11 (26) ◽  
pp. 16096-16105
Author(s):  
Zhenya Xu ◽  
Hui Su ◽  
Jian Zhang ◽  
Wensen Liu ◽  
Zhaowu Zhu ◽  
...  

The multi-stage counter-current simulation process showed an extraction system with great potential for commercial application in boron recovery from salt lake brines with high magnesium content.


2012 ◽  
Vol 490-495 ◽  
pp. 1451-1455
Author(s):  
Guang Yao Zhao ◽  
Yi Feng Zhao ◽  
Chuan Yin Tang ◽  
Zhi Yuan Du

Aimed at SUV-type vehicle, simulation and analysis of pressure resistance experiments on the body of automobile has been presented in the paper, according to the vehicle safety regulations and standards of FMVSS216. A limited SUV vehicle model is created; simulation is obtained with the help of software LS-DYNA, based on the principle of finite element analysis method. Assessment of pressure resistance and safety of the automobile has been presented, from the aspect of the deformation of body, the energy absorption of the vehicle and components, and the pressure on the body, etc. By rational improving of the original design of body structure, the reasonable distribution of pressure absorbability of the body of the SUV-type automobile is achieved. The effect of the overall energy absorption of the body is fully exerted, and then the safety of the driver and the passenger in a rollover accident is improved. Research methods and conclusions of this paper provide useful ways and references to the research of the safety of vehicle rollover and design of rationality of body energy absorption


Sign in / Sign up

Export Citation Format

Share Document