scholarly journals POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS

2001 ◽  
Author(s):  
Daniel J. Stepan ◽  
Thomas A. Moe ◽  
Melanie D. Hetland ◽  
Margaret L. Laumb
2021 ◽  
Vol 773 ◽  
pp. 145110
Author(s):  
Samylla Oliveira ◽  
Allan Clemente ◽  
Indira Menezes ◽  
Amanda Gois ◽  
Ismael Carloto ◽  
...  

Adsorption ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 983-999 ◽  
Author(s):  
María de los Ángeles Bernal-Romero del Hombre Bueno ◽  
Nuria Boluda-Botella ◽  
Daniel Prats Rico

2007 ◽  
Vol 7 (5-6) ◽  
pp. 43-51 ◽  
Author(s):  
Y. Matsui ◽  
T. Aizawa ◽  
M. Suzuki ◽  
Y. Kawase

The musty-earthy taste and odour caused by the presence of geosmin and other compounds in tap water are major causes of consumer complaints. Although ozonation and granular activated carbon (GAC) adsorption have been practiced in water-treatment plants to remove these compounds effectively, two major problems associated with the application of these processes – formation of stringently regulated bromate ions by ozonation and unhygienic invertebrate colonisation of GAC filters – are still to be resolved. This research advanced the process of adsorption by powdered activated carbon (PAC) by reducing its particle size to the submicrometre range for microfiltration pretreatment. Adsorption pretreatment by using this super (S)-PAC removed the geosmin with vastly greater efficiency than by normal PAC. Removal was attained in a much shorter contact time and at a much lower dosage. The S-PAC was also beneficial in attenuating the transmembrane pressure rises that occurred between both physical backwashings and chemical cleanings.


Author(s):  
Minja Bogunović ◽  
Tijana Marjanović ◽  
Ivana Ivančev-Tumbas

Emerging microcontaminants benzophenone (BP), benzophenone-3 (BP-3) and caffeine (CF) are widely used anthropogenic markers from a group of pharmaceuticals and personal care products. They have different logD values and charges at neutral pH (2.96 neutral for BP; 3.65 negative and neutral for BP-3; 0.28 and neutral for CF). The goal of this study was to assess the efficacy of coagulation/flocculation/sedimentation (C/F/S), adsorption onto two types of powdered activated carbon (PAC)/sedimentation (PAC/S) and the combination of these two processes in different dosing sequences (PAC/C/F/S) and with/without ultrafiltration (powdered activated carbon/ultrafiltration—PAC/UF, coagulation/UF—CoA/UF) for the removal of selected micropollutants from river water. It was shown that the removal efficiency of benzophenones by coagulation depends on the season, while CF was moderately removed (40–70%). The removal of neutral BP by two PACs unexpectedly differed (near 40% and ˃93%), while the removal of BP-3 was excellent (>95%). PACs were not efficient for the removal of hydrophilic CF. Combined PAC/C/F/S yielded excellent removal for BP and BP-3 regardless of PAC type only when the PAC addition was followed by C/F/S, while C/F/S efficiency for CF diminished. The combination of UF with PAC or coagulant showed also high efficacy for benzophenones, but was negligible for CF removal.


Chemosphere ◽  
2020 ◽  
Vol 252 ◽  
pp. 126641
Author(s):  
Ye-Eun Lee ◽  
Dong-Chul Shin ◽  
Yoonah Jeong ◽  
I-Tae Kim ◽  
Yeong-Seok Yoo

2004 ◽  
Vol 50 (8) ◽  
pp. 81-87 ◽  
Author(s):  
G.T. Seo ◽  
C.D. Moon ◽  
S.W. Chang ◽  
S.H. Lee

A pilot scale experiment was conducted to evaluate the performance of a membrane bioreactor filled with high concentration powdered activated carbon. This hybrid system has great potential to substitute for existing GAC or O3/BAC processes in the drinking water treatment train. The system was installed at a water treatment plant located downstream of the Nakdong river basin, Korea. Effluent of rapid sand filter was used as influent of the system which consists of PAC bio-reactor, submerged MF membrane module and air supply facility. PAC concentration of 20 g/L was maintained at the beginning of the experiment and it was increased to 40 g/L. The PAC has not been changed during the operational periods. The membrane was a hollow fiber type with pore sizes of 0.1 and 0.4 µm. It was apparent that the high PAC concentration could prevent membrane fouling. 40 g/L PAC was more effective to reduce the filtration resistance than 20 g/L. At the flux of 0.36 m/d, TMP was maintained less than 40 kPa for about 3 months by intermittent suction type operation (12 min suction/3 min idling). Adsorption was the dominant role to remove DOC at the initial operational period. However the biological effect was gradually increased after around 3 months operation. Constant DOC removal could be maintained at about 40% without any trouble and then a tremendous reduction of DBPs (HAA5 and THM) higher than 85% was achieved. Full nitrification was observed at the controlled influent ammonia nitrogen concentration of 3 and 7 mg/L. pH was an important parameter to keep stable ammonia oxidation. From almost two years of operation, it is clear that the PAC membrane bioreactor is highly applicable for advanced water treatment under the recent situation of more stringent DBPs regulation in Korea.


Sign in / Sign up

Export Citation Format

Share Document