scholarly journals Transmission electron microscopy of oxide dispersion strengthened (ODS) molybdenum: effects of irradiation on material microstructure

2003 ◽  
Author(s):  
R. and Burke, M.G. Baranwal
2017 ◽  
Vol 40 (1) ◽  
pp. 67-107
Author(s):  
Krzysztof Łęczycki

Abstract Firing from gun armament generates a wide range of physico-chemical phenomena contributing to the degradation of barrel material, e.g. pressure, high temperature, chemically aggressive character of post-detonation gases and friction of a driving band. In this work the technique of thin foils was used in Transmission Electron Microscopy (TEM) to study the influence of physicochemical phenomena on the material microstructure of aircraft gun barrel. A mechanism and reason of premature wear-out of the barrel under consideration was also outlined by utilising light microscopy and hardness measurements.


2007 ◽  
Vol 558-559 ◽  
pp. 313-318
Author(s):  
Hugo Ricardo Zschommler Sandim ◽  
Alexandra O.F. Hayama ◽  
Dierk Raabe

PM 1000 is a nickel-based oxide dispersion strengthened (ODS) superalloy used for high-temperature applications. The primary recrystallization of a <100>-fiber textured coarsegrained oxide dispersion strengthened nickel-based superalloy (PM 1000) has been investigated. The annealing behavior of this alloy is quite complex. Even when annealing is performed at high homologous temperatures (e.g. 0.9 Tm, Tm is the melting point), recrystallization is partial. In order to understand such a behavior, the microstructure of specimens in both the as-received, deformed, and annealed conditions has been imaged in detail using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution electron backscatter diffraction (EBSD). In the annealed state we observe a significant volume fraction of tiny crystals in the interior of the recovered grains. These tiny grains are elongated and grow mostly along the existing low angle dislocation boundaries (anisotropic growth). In the present paper we propose a twinningassisted nucleation mechanism to clarify their origin during recrystallization.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Sign in / Sign up

Export Citation Format

Share Document