A Polylactosamine-Specific Lectin From Adenia Hondala Induces Apoptosis And Necrosis In Human Epithelial Colon Cancer Ht-29 Cells

2021 ◽  
Vol 28 ◽  
Author(s):  
Shashikala R. Inamdar ◽  
Narasimhappagari Jagadeesh ◽  
Kavita Y. Hiremath ◽  
Shivakumar Belur ◽  
Mamta Sharma

Background: Altered expression of N-glycans such as polylactosamine is observed in colon cancer. AHL, a polylactosamine specific lectin from Adenia hondala from a medicinal plant from the Passifloraceae family, has been reported earlier. Objective: The aim of the present study is to study the interaction of AHL with human colon cancer epithelial HT-29 cells and colon cancer tissues. Methods: Cell viability was determined by MTT [3-[4, 5- dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide] assay, while cell surface binding and apoptosis by Annexin-V-PI assay. ROS production was analyzed using DCFDA [2’,7’ – dichlorofluorescindiacetate] kit method by flow cytometry. Immunohistochemistry was performed using biotinylated AHL and protein purification by affinity chromatography using asialofetuin-coupled Sepahrose -4B column. Results: AHL strongly binds to HT-29 cells with a Mean Fluorescence Intensity of 12.4, which could be blocked by competing for glycoprotein asialofetuin. AHL inhibits HT-29 cell growth in a dose and time-dependent manner with IC50 of 2.5µg/ml and differentially binds to human normal and cancerous tissues. AHL induces apoptosis and slight necrosis in HT-29 cells, increasing the early apoptotic population by 25.1% and 36% for 24 h and 48h, respectively, and necrotic population by 1.5% and 4.6 % at 24h and 48h, respectively, as revealed by Annexin-V-PI assay. AHL induces the release of Reactive Oxygen Species in HT-29 cells in a dose-dependent manner. Conclusion: To the best of knowledge, this is the first report on lectin from Adenia hondala, which is not a RIP with apoptotic and necrotic effect. These findings support the promising potential of AHL in cancer research.

Author(s):  
Maria G. Catalano ◽  
Ulrich Pfeffer ◽  
Mariangela Raineri ◽  
Paola Ferro ◽  
Antonella Curto ◽  
...  

2007 ◽  
Vol 43 (2) ◽  
pp. 195-205 ◽  
Author(s):  
Ana García-Navarro ◽  
Cristina González-Puga ◽  
Germaine Escames ◽  
Luis C. López ◽  
Ana López ◽  
...  

Planta Medica ◽  
2005 ◽  
Vol 71 (6) ◽  
pp. 501-507 ◽  
Author(s):  
Jung-Mi Yun ◽  
Hoonjeong Kwon ◽  
Hasan Mukhtar ◽  
Jae-Kwan Hwang

Medicines ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 123 ◽  
Author(s):  
Jun-Xian Zhou ◽  
Michael Wink

Background: We studied the effect of three plant extracts (Glycyrrhiza glabra, Paeonia lactiflora, Eriobotrya japonica) and six of their major secondary metabolites (glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, ursolic acid) on the multidrug resistant human colon cancer cell line Caco-2 and human leukemia cell line CEM/ADR 5000 as compared to the corresponding sensitive cell line CCRF-CEM, and human colon cancer cells HCT-116, which do not over-express ATP-binding cassette (ABC) transporters. Methods: The cytotoxicity of single substances in sensitive and resistant cells was investigated by MTT assay. We also applied combinations of extracts or single compounds with the chemotherapeutic agent doxorubicin or doxorubicin plus the saponin digitonin. The intracellular retention of the ABC transporter substrates rhodamine 123 and calcein was examined by flow cytometry to explore the effect of the substances on the activity of ABC transporters P-glycoprotein and MRP1. Real-time PCR was applied to analyse the gene expression changes of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 in resistant cells under the treatment of the substances. Results: All the substances moderately inhibited cell growth in sensitive and resistant cells to some degree. Whereas ursolic acid showed IC50 of 14 and 22 µM in CEM/ADR 5000 and Caco-2 cells, respectively, glycyrrhizic acid and paeoniflorin were inactive with IC50 values above 400 μM. Except for liquiritigenin and isoliquiritigenin, all the other substances reversed MDR in CEM/ADR 5000 and Caco-2 cells to doxorubicin. Ue, ga, 18ga, and urs were powerful reversal agents. In CEM/ADR 5000 cells, high concentrations of all the substances, except Paeonia lactiflora extract, increased calcein or rhodamine 123 retention in a dose-dependent manner. In Caco-2 cells, all the substances, except liquiritigenin, retained rhodamine 123 in a dose-dependent manner. We also examined the effect of the plant secondary metabolite (PSM) panel on the expression of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 genes in MDR cells. Conclusions: The extracts and individual PSM could reverse MDR in CEM/ADR 5000 and Caco-2 cells, which overexpress ABC transporters, in two- and three-drug combinations. Most of the PSM also inhibited the activity of ABC transporters to some degree, albeit at high concentrations. Ue, ga, 18ga, and urs were identified as potential multidrug resistance (MDR) modulator candidates, which need to be characterized and validated in further studies.


2016 ◽  
Vol 36 (7) ◽  
pp. 692-700 ◽  
Author(s):  
T Ranjbarnejad ◽  
M Saidijam ◽  
M sadat tafakh ◽  
M Pourjafar ◽  
F Talebzadeh ◽  
...  

Background: Colorectal cancer is the fourth leading cause of death. Various natural compounds are known to have antitumor properties. Garcinol, a polyisoprenylated benzophenone, has antioxidant and anti-inflammatory properties. In the current study, we investigated the anticancer activity of garcinol on human colorectal adenocarcinoma cell line (HT-29) human colon cancer cells. Methods: HT-29 cells were treated with various concentrations of garcinol for 24 h. The effect of garcinol on HT-29 cells proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay; the mRNA expression of microsomal prostaglandin E synthase-1 (mPGES-1), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), C-X-C chemokine receptor type 4 (CXCR4), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9) were examined by quantitative real-time polymerase chain reaction; apoptosis was detected by proportion of sub-G1 cell; caspase 3 activity and prostaglandin E2 (PGE2) level were determined by enzyme-linked immunosorbent assay and HT-29 cells migration was assessed using scratch test. Results: Garcinol preconditioning markedly decreased the expression of mPGES-1, HIF-1α, VEGF, CXCR4, MMP-2, and MMP-9. The proportion of cells in sub-G1 phase and caspase 3 activity were increased by garcinol treatment whereas the cell proliferation, PGE2 level, and cell migration were decreased in these cells, compared to the control group. Conclusion: Our findings suggest that garcinol plays a critical role in elevating apoptosis and inhibiting HT-29 cells proliferation, angiogenesis, and invasion by suppressing the mPGES-1/PGE2/HIF-1α signaling pathways.


2017 ◽  
Vol 152 (5) ◽  
pp. S1029
Author(s):  
Themistoklis Kourkoumpetis ◽  
Liang Chen ◽  
Michael Ittmann ◽  
David Y. Graham ◽  
Hashem B. El-Serag ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document