Molecular Cloning, Functional and Biophysical Characterization of an Antimicrobial Peptide from Rhizosphere Soil

2021 ◽  
Vol 28 ◽  
Author(s):  
Jaspreet Kaur Boparai ◽  
Nancy Nancy ◽  
Pushpender Kumar Sharma

Aim: This study was designed to screen and identify an antimicrobial peptide from rhizosphere soil. The study was further focused towards overexpression, purification and characterization of this antimicrobial peptide, and to functionally validate its efficiency and efficacy as an antimicrobial agent. Yet the study was further aimed at corroborating structural and functional studies using biophysical tools. Background: Antimicrobial resistance is emerging as one of the top 10 global health crisis, it is multifaceted and is the second largest cause of mortality. According to the World Health Organization (WHO), around the world, an estimated 700,000 people die each year from infection caused by antibiotic-resistant microbes. Antimicrobial peptides offers best alternative to combat and overcome this crisis. In this manuscript, we report cloning, expression, purification and characterization of an antimicrobial peptide discovered from rhizosphere soil. Objective: Objectives of this study includes construction, screening and identification of antimicrobial peptide from metagenome followed by its expression, purification and functional and biophysical investigation. Yet another objective of the study was to determine antimicrobial efficacy and efficiency as an antimicrobial peptide towards MRSA strains. Results: Screening of metagenomic library resulted in identification of gene (~500bp) harbouring an open reading frame (ORF) consisting of 282 bp. Open reading frame identified in gene encodes an antimicrobial peptide which had shared ~95% sequence similarity with the antimicrobial peptide of Bacillus origin. Purification of recombinant protein using Ni-NTA column chromatography demonstrated a purified protein band of ~11 kDa on 14% SDS-PAGE which is well corroborated to theoretical deduced molecular weight of peptide from its amino acids sequence. Interestingly, the peptide exhibited antimicrobial activity in broad range of pH and temperature. MIC (minimum inhibitory concentration) determined against gram positive Bacillus sp. was found to be 0.015mg/ml, whereas in case of gram negative E. coli, it was calculated to be 0.062mg/ml. The peptide exhibited IC50 values corresponding to ~0.25mg/ml against Bacillus and ~0.5 mg/ml against E. coli. Antimicrobial susceptibility assay performed against methicillin resistant Staphylococcus aureus strain ATCC 3412 and standard strain of Staphylococcus aureus ATCC 9144 revealed its strong inhibitory activity against MRSA, whereby we observed a ~16mm clearance zone at higher peptide concentrations ~2mg/ml (~181.8µM). Biophysical investigation carried out using Trp fluorescence, ANS fluorescence and circular dichroism spectroscopy further revealed conformational stability in its secondary and tertiary structure at wide range of temperature and pH. Conclusion: Altogether, the peptide discovered from rhizosphere metagenome hold potential in inhibiting the growth of both the gram positive and gram negative bacteria, and was equally effective in inhibiting the multidrug resistant pathogenic strains (MRSA).

Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1385
Author(s):  
Giulia Pezzoni ◽  
Lidia Stercoli ◽  
Eleonora Pegoiani ◽  
Emiliana Brocchi

To evaluate the antigenic properties of Hepatitis E Virus (HEV) Open Reading Frame 2 and 3 (ORF2 and ORF3) codified proteins, we expressed different portions of ORF2 and the entire ORF3 in E. coli, a truncated ORF2, was also expressed in baculovirus. A panel of 37 monoclonal antibodies (MAbs) was raised against ORF2 (1–660 amino acids) and MAbs were mapped and characterized using the ORF2 expressed portions. Selected HEV positive and negative swine sera were used to evaluate ORF2 and ORF3 antigens’ immunogenicity. The MAbs were clustered in six groups identifying six antigenic regions along the ORF2. Only MAbs binding to the sixth ORF2 antigenic region (394–608 aa) were found to compete with HEV positive sera and efficiently catch the recombinant antigen expressed in baculovirus. The ORF2 portion from 394–608 aa demonstrated to include most immunogenic epitopes with 85% of HEV positive swine sera reacting against the region from 461–544 aa. Only 5% of the selected HEV sera reacted against the ORF3 antigen.


Holzforschung ◽  
2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Fang-Hua Chu ◽  
Pei-Min Kuo ◽  
Yu-Rong Chen ◽  
Sheng-Yang Wang

AbstractAnalyzing the gene sequences of terpene synthase (TPS) may contribute to a better understanding of terpenes biosynthesis and evolution of phylogenetic taxonomy.Chamaecyparis formosensisis an endemic and precious conifer of Taiwan. To understand the biosynthesis mechanism of terpenes in this tree, a full length of putative mono-TPS, named asCf-Pin(GeneBank accession no. EU099434), was obtained by PCR method and RACE extension. TheCf-Pinhas an 1887-bp open reading frame and encodes 628 amino acids. To identify the function ofCf-Pin,the recombinant protein fromEscherichia coliwas incubated with geranyl diphosphate, produced one major product, the structure of which was elucidated. GC/MS analysis and matching of retention time and mass spectrum with authentic standards revealed that this product isα-pinene. This is the first report of cloning of a mono-TPS and functionally expressed inE. coliand which could be identified asα-pinene synthase from a Cupressaceae conifer.


1999 ◽  
Vol 380 (12) ◽  
pp. 1455-1459 ◽  
Author(s):  
Eun Young Yun ◽  
Seok Woo Kang ◽  
Jae Sam Hwang ◽  
Tae Won Goo ◽  
Sang Hyun Kim ◽  
...  

Abstract We isolated a cDNA representing a message that was strongly induced by injection with E. coli in Bombyx mori. The 2160 bp cDNA has an open reading frame of 644 amino acids and the deduced product a predicted molecular mass of 71 kDa. The cDNA sequence shared high homology with the transferrins known so far, and its deduced peptide had unique features of transferrins, that is, sites of cystein residues and iron binding. We suggest that the B. mori transferrin plays an important role in the self-defense system.


Author(s):  
Takaaki Konuma ◽  
Shunsuke Takahashi ◽  
Masato Suzuki ◽  
Arinobu Tojo

The polymerase chain reaction-based open reading frame typing (POT) method is a simple and rapid method for the strain-level discrimination of methicillin-resistant Staphylococcus aureus (MRSA). We investigated the molecular charac- teristics of S. aureus strains by multilocus sequencing typing (MLST) and POT and the profiles of antibiotic resistance and virulence genes of MRSA isolates in a single center of Tokyo, Japan. Five types by MLST and 19 types by POT were detected in the 25 MRSA isolates. ST5 and a POT1 score of 93 were associated with healthcare-associated MRSA, whereas ST8 and a POT1 score of 106 were associated with community-associated MRSA. Each strain evaluated by POT score was completely associated with similar profiles of antibiotic resistance and virulence genes. These data showed that the POT system was a powerful molecular tool for the epidemiological characterization of MRSA isolates, which correlated with the profiles of antibiotic resistance and virulence genes.  


1998 ◽  
Vol 66 (6) ◽  
pp. 2871-2878 ◽  
Author(s):  
Ursula Fluckiger ◽  
Christiane Wolz ◽  
Ambrose L. Cheung

ABSTRACT Coagulase-negative staphylococci are common nosocomial pathogens. A regulatory element, designated sar, partially controls exoprotein synthesis in coagulase-positive Staphylococcus aureus by modulating the expression of another regulatory locus, called agr. We report here the cloning of a sarhomolog in S. epidermidis. The major open reading frame within sar in S. epidermidis is highly homologous (84%) to the S. aureus SarA protein. Primer extension studies revealed three sar transcripts (0.64, 0.76, and 0.85 kb) initiated from three distinct promoters. The interpromoter region in S. epidermidis differs from itsS. aureus counterpart, possibly suggesting target gene differences and a disparate pattern for sar activation. Remarkably, the S. epidermidis sar homolog interacts with an agr promoter fragment of S. aureus in gel shift assays. Additionally, S. epidermidis sar fragments could restore hemolysin production in an S. aureus sarmutant. As typical virulence determinants controlled by sarin S. aureus are not present in S. epidermidis, an examination of functional and structural similarities and divergence of sar in staphylococci will be of major interest.


2020 ◽  
Vol 15 (6) ◽  
pp. 665-679
Author(s):  
Alok K. Srivastava ◽  
Lokesh K. Pandey

Background: [1, 3, 4]oxadiazolenone core containing chalcones and nucleosides were synthesized by Claisen-Schmidt condensation of a variety of benzaldehyde derivatives, obtained from oxidation of substituted 5-(3/6 substituted-4-Methylphenyl)-1, 3, 4-oxadiazole-2(3H)-one and various substituted acetophenone. The resultant chalcones were coupled with penta-O-acetylglucopyranose followed by deacetylation to get [1, 3, 4] oxadiazolenone core containing chalcones and nucleosides. Various analytical techniques viz IR, NMR, LC-MS and elemental analysis were used to confirm the structure of the synthesised compounds.The compounds were targeted against Bacillus subtilis, Staphylococcus aureus and Escherichia coli for antibacterial activity and Aspergillus flavus, Aspergillus niger and Fusarium oxysporum for antifungal activity. Methods: A mixture of Acid hydrazides (3.0 mmol) and N, Nʹ- carbonyl diimidazole (3.3 mmol) in 15 mL of dioxane was refluxed to afford substituted [1, 3, 4]-oxadiazole-2(3H)-one. The resulted [1, 3, 4]- oxadiazole-2(3H)-one (1.42 mmol) was oxidized with Chromyl chloride (1.5 mL) in 20 mL of carbon tetra chloride and condensed with acetophenones (1.42 mmol) to get chalcones 4. The equimolar ratio of obtained chalcones 4 and β -D-1,2,3,4,6- penta-O-acetylglucopyranose in presence of iodine was refluxed to get nucleosides 5. The [1, 3, 4] oxadiazolenone core containing chalcones 4 and nucleosides 5 were tested to determined minimum inhibitory concentration (MIC) value with the experimental procedure of Benson using disc-diffusion method. All compounds were tested at concentration of 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.62 mg/mL, 0.31 mg/mL and 0.15 mg/mL for antifungal activity against three strains of pathogenic fungi Aspergillus flavus (A. flavus), Aspergillus niger (A. niger) and Fusarium oxysporum (F. oxysporum) and for antibacterial activity against Gram-negative bacterium: Escherichia coli (E. coli), and two Gram-positive bacteria: Staphylococcus aureus (S. aureus) and Bacillus subtilis(B. subtilis). Result: The chalcones 4 and nucleosides 5 were screened for antibacterial activity against E. coli, S. aureus and B. subtilis whereas antifungal activity against A. flavus, A. niger and F. oxysporum. Compounds 4a-t showed good antibacterial activity whereas compounds 5a-t containing glucose moiety showed better activity against fungi. The glucose moiety of compounds 5 helps to enter into the cell wall of fungi and control the cell growth. Conclusion: Chalcones 4 and nucleosides 5 incorporating [1, 3, 4] oxadiazolenone core were synthesized and characterized by various spectral techniques and elemental analysis. These compounds were evaluated for their antifungal activity against three fungi; viz. A. flavus, A. niger and F. oxysporum. In addition to this, synthesized compounds were evaluated for their antibacterial activity against gram negative bacteria E. Coli and gram positive bacteria S. aureus, B. subtilis. Compounds 4a-t showed good antibacterial activity whereas 5a-t showed better activity against fungi.


2002 ◽  
Vol 68 (12) ◽  
pp. 6237-6245 ◽  
Author(s):  
Tara D. Sutherland ◽  
Irene Horne ◽  
Robyn J. Russell ◽  
John G. Oakeshott

ABSTRACT The gram-positive bacterium Mycobacterium sp. strain ESD is able to use the cyclodiene insecticide endosulfan as a source of sulfur for growth. This activity is dependent on the absence of sulfite or sulfate in the growth medium. A cosmid library of strain ESD DNA was constructed in a Mycobacterium-Escherichia coli shuttle vector and screened for endosulfan-degrading activity in Mycobacterium smegmatis, a species that does not degrade endosulfan. Using this method, we identified a single cosmid that conferred sulfur-dependent endosulfan-degrading activity on the host strain. An open reading frame (esd) was identified within this cosmid that, when expressed behind a constitutive promoter in a mycobacterial expression vector, conferred sulfite- and sulfate-independent β-endosulfan degradation activity on the recombinant strain. The translation product of this gene (Esd) had up to 50% sequence identity with an unusual family of monooxygenase enzymes that use reduced flavins, provided by a separate flavin reductase enzyme, as cosubstrates. An additional partial open reading frame was located upstream of the Esd gene that had sequence homology to the same monooxygenase family. A flavin reductase gene, identified in the M. smegmatis genome, was cloned, expressed, and used to provide reduced flavin mononucleotide for Esd in enzyme assays. Thin-layer chromatography and gas chromatography analyses of the enzyme assay mixtures revealed the disappearance of β-endosulfan and the appearance of the endosulfan metabolites, endosulfan monoaldehyde and endosulfan hydroxyether. This suggests that Esd catalyzes the oxygenation of β-endosulfan to endosulfan monoaldehyde and endosulfan hydroxyether. Esd did not degrade either α-endosulfan or the metabolite of endosulfan, endosulfan sulfate.


2013 ◽  
Vol 6 (1) ◽  
pp. 205-209
Author(s):  
Rathnakar Reddi KVN ◽  
Santhosh Kumar Pasupuleti ◽  
Venkateswara Prasad Uppu ◽  
Yeswanth Sthanikam ◽  
Swarupa Vimjam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document