scholarly journals Effective decellularisation of human saphenous veins for biocompatible arterial tissue engineering applications: Bench optimisation and feasibility in vivo testing

2021 ◽  
Vol 12 ◽  
pp. 204173142098752
Author(s):  
Nadiah S Sulaiman ◽  
Andrew R Bond ◽  
Vito D Bruno ◽  
John Joseph ◽  
Jason L Johnson ◽  
...  

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.

2020 ◽  
Vol 27 (10) ◽  
pp. 1634-1646 ◽  
Author(s):  
Huey-Shan Hung ◽  
Shan-hui Hsu

Treatment of cardiovascular disease has achieved great success using artificial implants, particularly synthetic-polymer made grafts. However, thrombus formation and restenosis are the current clinical problems need to be conquered. New biomaterials, modifying the surface of synthetic vascular grafts, have been created to improve long-term patency for the better hemocompatibility. The vascular biomaterials can be fabricated from synthetic or natural polymers for vascular tissue engineering. Stem cells can be seeded by different techniques into tissue-engineered vascular grafts in vitro and implanted in vivo to repair the vascular tissues. To overcome the thrombogenesis and promote the endothelialization effect, vascular biomaterials employing nanotopography are more bio-mimic to the native tissue made and have been engineered by various approaches such as prepared as a simple surface coating on the vascular biomaterials. It has now become an important and interesting field to find novel approaches to better endothelization of vascular biomaterials. In this article, we focus to review the techniques with better potential improving endothelization and summarize for vascular biomaterial application. This review article will enable the development of biomaterials with a high degree of originality, innovative research on novel techniques for surface fabrication for vascular biomaterials application.


2010 ◽  
Vol 88 (9) ◽  
pp. 855-873 ◽  
Author(s):  
Divya Pankajakshan ◽  
Devendra K. Agrawal

Tissue engineering of small diameter (<5 mm) blood vessels is a promising approach for developing viable alternatives to autologous vascular grafts. It involves in vitro seeding of cells onto a scaffold on which the cells attach, proliferate, and differentiate while secreting the components of extracellular matrix that are required for creating the tissue. The scaffold should provide the initial requisite mechanical strength to withstand in vivo hemodynamic forces until vascular smooth muscle cells and fibroblasts reinforce the extracellular matrix of the vessel wall. Hence, the choice of scaffold is crucial for providing guidance cues to the cells to behave in the required manner to produce tissues and organs of the desired shape and size. Several types of scaffolds have been used for the reconstruction of blood vessels. They can be broadly classified as biological scaffolds, decellularized matrices, and polymeric biodegradable scaffolds. This review focuses on the different types of scaffolds that have been designed, developed, and tested for tissue engineering of blood vessels, including use of stem cells in vascular tissue engineering.


2021 ◽  
Author(s):  
Lipika R. Pal ◽  
Kuoyuan Cheng ◽  
Nishanth U Nair ◽  
Laura Martin-Sancho ◽  
Sanju Sinha ◽  
...  

Novel strategies are needed to identify drug targets and treatments for the COVID-19 pandemic. The altered gene expression of virus-infected host cells provides an opportunity to specifically inhibit viral propagation via targeting the synthetic lethal (SL) partners of such altered host genes. Pursuing this antiviral strategy, here we comprehensively analyzed multiple in vitro and in vivo bulk and single-cell RNA-sequencing datasets of SARS-CoV-2 infection to predict clinically relevant candidate antiviral targets that are SL with altered host genes. The predicted SL-based targets are highly enriched for infected cell inhibiting genes reported in four SARS-CoV-2 CRISPR-Cas9 genome-wide genetic screens. Integrating our predictions with the results of these screens, we further selected a focused subset of 26 genes that we experimentally tested in a targeted siRNA screen using human Caco-2 cells. Notably, as predicted, knocking down these targets reduced viral replication and cell viability only under the infected condition without harming non-infected cells. Our results are made publicly available, to facilitate their in vivo testing and further validation.


2021 ◽  
Vol 7 ◽  
Author(s):  
Bruna B. J. Leal ◽  
Naohiro Wakabayashi ◽  
Kyohei Oyama ◽  
Hiroyuki Kamiya ◽  
Daikelly I. Braghirolli ◽  
...  

Cardiovascular disease is the most common cause of death in the world. In severe cases, replacement or revascularization using vascular grafts are the treatment options. While several synthetic vascular grafts are clinically used with common approval for medium to large-caliber vessels, autologous vascular grafts are the only options clinically approved for small-caliber revascularizations. Autologous grafts have, however, some limitations in quantity and quality, and cause an invasiveness to patients when harvested. Therefore, the development of small-caliber synthetic vascular grafts (&lt;5 mm) has been urged. Since small-caliber synthetic grafts made from the same materials as middle and large-caliber grafts have poor patency rates due to thrombus formation and intimal hyperplasia within the graft, newly innovative methodologies with vascular tissue engineering such as electrospinning, decellularization, lyophilization, and 3D printing, and novel polymers have been developed. This review article represents topics on the methodologies used in the development of scaffold-based vascular grafts and the polymers used in vitro and in vivo.


2014 ◽  
Vol 80 (17) ◽  
pp. 5265-5273 ◽  
Author(s):  
Guirong Tang ◽  
Ying Wang ◽  
Li Luo

ABSTRACTRhizobia induce nitrogen-fixing nodules on host legumes, which is important in agriculture and ecology. Lipopolysaccharide (LPS) produced by rhizobia is required for infection or bacteroid survival in host cells. Genes required for LPS biosynthesis have been identified in severalRhizobiumspecies. However, the regulation of their expression is not well understood. Here,Sinorhizobium melilotiLsrB, a member of the LysR family of transcriptional regulators, was found to be involved in LPS biosynthesis by positively regulating the expression of thelrp3-lpsCDEoperon. AnlsrBin-frame deletion mutant displayed growth deficiency, sensitivity to the detergent sodium dodecyl sulfate, and acidic pH compared to the parent strain. This mutant produced slightly less LPS due to lower expression of thelrp3operon. Analysis of the transcriptional start sites of thelrp3andlpsCDEgene suggested that they constitute one operon. The expression oflsrBwas positively autoregulated. The promoter region oflrp3was specifically precipitated by anti-LsrB antibodiesin vivo. The promoter DNA fragment containing TN11A motifs was bound by the purified LsrB proteinin vitro. These new findings suggest thatS. melilotiLsrB is associated with LPS biosynthesis, which is required for symbiotic nitrogen fixation on some ecotypes of alfalfa plants.


2020 ◽  
Vol 26 (3) ◽  
pp. 167-178 ◽  
Author(s):  
T T Tiemann ◽  
A M Padma ◽  
E Sehic ◽  
H Bäckdahl ◽  
M Oltean ◽  
...  

Abstract Uterus tissue engineering may dismantle limitations in current uterus transplantation protocols. A uterine biomaterial populated with patient-derived cells could potentially serve as a graft to circumvent complicated surgery of live donors, immunosuppressive medication and rejection episodes. Repeated uterine bioengineering studies on rodents have shown promising results using decellularised scaffolds to restore fertility in a partially impaired uterus and now mandate experiments on larger and more human-like animal models. The aim of the presented studies was therefore to establish adequate protocols for scaffold generation and prepare for future in vivo sheep uterus bioengineering experiments. Three decellularisation protocols were developed using vascular perfusion through the uterine artery of whole sheep uteri obtained from slaughterhouse material. Decellularisation solutions used were based on 0.5% sodium dodecyl sulphate (Protocol 1) or 2% sodium deoxycholate (Protocol 2) or with a sequential perfusion of 2% sodium deoxycholate and 1% Triton X-100 (Protocol 3). The scaffolds were examined by histology, extracellular matrix quantification, evaluation of mechanical properties and the ability to support foetal sheep stem cells after recellularisation. We showed that a sheep uterus can successfully be decellularised while maintaining a high integrity of the extracellular components. Uteri perfused with sodium deoxycholate (Protocol 2) were the most favourable treatment in our study based on quantifications. However, all scaffolds supported stem cells for 2 weeks in vitro and showed no cytotoxicity signs. Cells continued to express markers for proliferation and maintained their undifferentiated phenotype. Hence, this study reports three valuable decellularisation protocols for future in vivo sheep uterus bioengineering experiments.


2019 ◽  
Vol 34 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Xin Zhou ◽  
Yiwa Pan ◽  
Ruihua Liu ◽  
Xin Luo ◽  
Xianyan Zeng ◽  
...  

Electrospun polymer scaffolds are regarded as an ideal tissue engineering scaffold due to similar morphological properties with the native extracellular matrix. Among these, polycaprolactone is widely used to fabricate electrospun fibrous scaffolds due to its excellent biocompatibility, good mechanical properties, and ease of manufacture. However, its low biodegradation rate has a negative influence on its application in tissue engineering scaffold. To address this issue, this study prepared hybrid scaffolds composed of polycaprolactone and polydioxanone (a fast-degrading polyether-ester) via either the blend or co-electrospinning. Subsequently, the structural characteristics, mechanical strength, in vitro/vivo degradation, cellularization, and vascularization of two kinds of hybrid scaffolds were evaluated to decide which method is more suitable for producing tissue engineering scaffolds. The incorporation of polydioxanone increased the mechanical strength of both composite scaffolds. Moreover, co-electrospun scaffolds exhibited improved hydrophilicity compared to blend scaffolds. The results of in vitro and in vivo degradation studies showed that the degradation rate of both composite scaffolds was faster than that of neat polycaprolactone scaffolds due to the incorporated polydioxanone component. Especially in co-electrospun scaffolds, the fast degradation of polydioxanone fiber gave rise to larger pore size, thus leading to faster cellularization and better vascularization compared to blend scaffolds. Therefore, co-electrospinning was demonstrated to be superior to blend electrospinning for the preparation of composite scaffolds. Co-electrospun polycaprolactone–polydioxanone scaffolds may be promising candidates for tissue engineering.


Author(s):  
Shuying Hu ◽  
Hanbang Chen ◽  
Fang Zhou ◽  
Jun Liu ◽  
Yun Zhu Qian ◽  
...  

Bone tissue engineering (BTE) is a promising approach to recover insufficient bone in dental implantation. However, the clinical application of BTE scaffolds is limited by their low mechanical strength and...


2013 ◽  
Vol 22 (3) ◽  
pp. e40
Author(s):  
Murielle Rémy ◽  
Patrick Menu ◽  
J.C. Voegel ◽  
J.F. Ponsot ◽  
M.F. Harmand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document