Thymosin β4: A Multi-Faceted Tissue Repair Stimulating Protein in Heart Injury

2020 ◽  
Vol 27 (37) ◽  
pp. 6294-6305 ◽  
Author(s):  
Geir Bjørklund ◽  
Maryam Dadar ◽  
Jan Aaseth ◽  
Salvatore Chirumbolo

Thymosin Beta-4 (Tβ4) is known as a major pleiotropic actin-sequestering protein that is involved in tumorigenesis. Tβ4 is a water-soluble protein that has different promising clinical applications in the remodeling and ulcerated tissues repair following myocardial infarction, stroke, plasticity and neurovascular remodeling of the Peripheral Nervous System (PNS) and the Central Nervous System (CNS). On the other hand, similar effects have been observed for Tβ4 in other kinds of tissues, including cardiac muscle tissue. In recent reports, as it activates resident epicardial progenitor cells and modulates inflammatory-caused injuries, Tβ4 has been suggested as a promoter of the survival of cardiomyocytes. Furthermore, Tβ4 may act in skeletal muscle and different organs in association/synergism with numerous other tissue repair stimulating factors, including melatonin and C-fiber-derived peptides. For these reasons, the present review highlights the promising role of Tβ4 in cardiac healing.

2020 ◽  
pp. 49-56
Author(s):  
T. Shirshova

Disorders of the musculoskeletal system in school-age children occupy 1-2 places in the structure of functional abnormalities. Cognitive impairment without organic damage to the central nervous system is detected in 30-56% of healthy school children. Along with the increase in the incidence rate, the demand for rehabilitation systems, which allow patients to return to normal life as soon as possible and maintain the motivation for the rehabilitation process, is also growing. Adaptation of rehabilitation techniques, ease of equipment management, availability of specially trained personnel and availability of technical support for complexes becomes important.


2019 ◽  
Vol 20 (7) ◽  
pp. 750-758 ◽  
Author(s):  
Yi Wu ◽  
Hengxun He ◽  
Zhibin Cheng ◽  
Yueyu Bai ◽  
Xi Ma

Obesity is one of the main challenges of public health in the 21st century. Obesity can induce a series of chronic metabolic diseases, such as diabetes, dyslipidemia, hypertension and nonalcoholic fatty liver, which seriously affect human health. Gut-brain axis, the two-direction pathway formed between enteric nervous system and central nervous system, plays a vital role in the occurrence and development of obesity. Gastrointestinal signals are projected through the gut-brain axis to nervous system, and respond to various gastrointestinal stimulation. The central nervous system regulates visceral activity through the gut-brain axis. Brain-gut peptides have important regulatory roles in the gut-brain axis. The brain-gut peptides of the gastrointestinal system and the nervous system regulate the gastrointestinal movement, feeling, secretion, absorption and other complex functions through endocrine, neurosecretion and paracrine to secrete peptides. Both neuropeptide Y and peptide YY belong to the pancreatic polypeptide family and are important brain-gut peptides. Neuropeptide Y and peptide YY have functions that are closely related to appetite regulation and obesity formation. This review describes the role of the gutbrain axis in regulating appetite and maintaining energy balance, and the functions of brain-gut peptides neuropeptide Y and peptide YY in obesity. The relationship between NPY and PYY and the interaction between the NPY-PYY signaling with the gut microbiota are also described in this review.


2018 ◽  
Vol 17 (4) ◽  
pp. 272-279 ◽  
Author(s):  
Yudan Zhu ◽  
Shuzhang Zhang ◽  
Yijun Feng ◽  
Qian Xiao ◽  
Jiwei Cheng ◽  
...  

Background & Objective: The large conductance calcium-activated potassium (BK) channel, extensively distributed in the central nervous system (CNS), is considered as a vital player in the pathogenesis of epilepsy, with evidence implicating derangement of K+ as well as regulating action potential shape and duration. However, unlike other channels implicated in epilepsy whose function in neurons could clearly be labeled “excitatory” or “inhibitory”, the unique physiological behavior of the BK channel allows it to both augment and decrease the excitability of neurons. Thus, the role of BK in epilepsy is controversial so far, and a growing area of intense investigation. Conclusion: Here, this review aims to highlight recent discoveries on the dichotomous role of BK channels in epilepsy, focusing on relevant BK-dependent pro- as well as antiepileptic pathways, and discuss the potential of BK specific modulators for the treatment of epilepsy.


1934 ◽  
Vol 59 (1) ◽  
pp. 21-34 ◽  
Author(s):  
H. M. Zimmerman ◽  
Ethel Burack

Adult dogs maintained on an artificial, balanced ration adequate in all dietary essentials as far as is known except water-soluble, heat-stable vitamin B2 (G) developed, after a sufficient time, a slowly progressive disease characterized by loss of weight, persistent vomiting and diarrhea, and marked muscular weakness, which ended fatally in from 200 to over 300 days. The clinical features of this condition, as pointed out in the discussion, are quite different from those characterizing the canine disease known as black tongue. The anatomic changes in this condition consist of marked demyelination of the peripheral nerves, including the vagus; degeneration of the medullary sheaths and replacement by gliosis of the posterior columns of the spinal cord, particularly the fasciculi graciles; degeneration of the medullary sheaths of the posterior and less often of the anterior nerve roots of the cord; occasionally slight degenerative changes in most of the other fiber tracts of the cord. Attention is called to the fact that degenerative lesions in the central nervous system similar or identical with these have frequently been described in pellagra in man.


Sign in / Sign up

Export Citation Format

Share Document