Biomimetic Nanostructures with Compositional Gradient Grown by Combinatorial Matrix-Assisted Pulsed Laser Evaporation for Tissue Engineering

2020 ◽  
Vol 27 (6) ◽  
pp. 903-918 ◽  
Author(s):  
Emanuel Axente ◽  
Felix Sima

: There is permanent progress with the fabrication of smart bioactive surfaces that could govern tissue regeneration. Thin coatings of two or more materials with compositional gradient allow the construction of arrays with different chemical and physical features on a solid substrate. With such intelligent bio-platforms, cells can be exposed to a tissue-like biomimetic micro-environment with precise characteristics that directs cells fate towards specific phenotypes. : We have introduced combinatorial matrix-assisted pulsed laser evaporation (C-MAPLE) as an alternative approach for the fabrication in a single-step process of either organic or inorganic thin and nanostructured coatings with variable composition. A continuous reciprocal gradient of two biomolecules can be achieved by C-MAPLE with discrete areas exhibiting physicochemical specificity that modulates intracellular signaling events. : Herein, we present a review of the current combinatorial laser strategies and methods for fabricating thin organic and inorganic films with compositional gradient with emphasis on the surface influence on cell responsiveness. In particular, the specific biological potential of surface functionalization with thin coatings of biopolymers, proteins and drugs will be discussed. Laser deposition combinatorial processes are considered an emerging unconventional technology that can be widely applied to produce composite multilayers and micro-patterns for faster cell colonization and tissue engineering.

2012 ◽  
Vol 101 (23) ◽  
pp. 233705 ◽  
Author(s):  
F. Sima ◽  
E. Axente ◽  
L. E. Sima ◽  
U. Tuyel ◽  
M. S. Eroglu ◽  
...  

2014 ◽  
Vol 5 ◽  
pp. 872-880 ◽  
Author(s):  
Alina Maria Holban ◽  
Valentina Grumezescu ◽  
Alexandru Mihai Grumezescu ◽  
Bogdan Ştefan Vasile ◽  
Roxana Truşcă ◽  
...  

We report on the fabrication of thin coatings based on polylactic acid-chitosan-magnetite-eugenol (PLA-CS-Fe3O4@EUG) nanospheres by matrix assisted pulsed laser evaporation (MAPLE). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) investigation proved that the homogenous Fe3O4@EUG nanoparticles have an average diameter of about 7 nm, while the PLA-CS-Fe3O4@EUG nanospheres diameter sizes range between 20 and 80 nm. These MAPLE-deposited coatings acted as bioactive nanosystems and exhibited a great antimicrobial effect by impairing the adherence and biofilm formation of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) bacteria strains. Moreover, the obtained nano-coatings showed a good biocompatibility and facilitated the normal development of human endothelial cells. These nanosystems may be used as efficient alternatives in treating and preventing bacterial infections.


2021 ◽  
pp. 103317
Author(s):  
Muidh Alheshibri ◽  
Sultan Akhtar ◽  
Abbad Al Baroot ◽  
Khaled Elsayed ◽  
Hassan S Al Qahtani ◽  
...  

1998 ◽  
Vol 555 ◽  
Author(s):  
H. Fritze ◽  
A. Schnittker ◽  
T. Witke ◽  
C. Rüscher ◽  
S. Weber ◽  
...  

AbstractPulsed Laser Deposition (PLD) allows the ablation of nonconductive and high melting point target materials and the preparation of films with complex composition. High energy impact leads to melting and evaporation of the target material in a single step. In case of mullite ablation, the flux of the metal components is stoichiometric. Under reduced pressure the oxygen content in the layers decreases. However, after a short oxidation treatment, the formation of mullite in the coating is completed, as confirmed by IR spectroscopy and XRD investigations. For a commercial Si-SiC precoated C/C material, the effectiveness of additional PLD mullite layers as outer oxidation protection is tested in the temperature range 773 K < T < 1873 K. Mullite coatings with a thickness of 2.5 pm improve the oxidation behaviour significantly. Because of SiO2 formation at the mullite-SiC interface, all samples exhibited a mass increase upon oxidation. For oxidation durations of three days, only amorphous SiO2 is formed at the mullite-SiC interface. The inward diffusion of oxygen across the outer mullite-containing layer controls the kinetics of the reaction, as was deduced from 18O diffusivity measurements in PLD mullite layers. At temperatures close to the eutectic temperature (1860 K), mullite can seal defects. The calculated oxidation rates resulting from the diffusion parameters in SiO2 and mullite are close to the thermogravimetric data.


1989 ◽  
Vol 162-164 ◽  
pp. 1105-1106 ◽  
Author(s):  
E. Faulques ◽  
P. Dupouy ◽  
G. Hauchecorne ◽  
F. Kerherve ◽  
A. Laurent ◽  
...  

2012 ◽  
Vol 110 (4) ◽  
pp. 771-777 ◽  
Author(s):  
Kimberly B. Shepard ◽  
Yunlong Guo ◽  
Craig B. Arnold ◽  
Rodney D. Priestley

2006 ◽  
Vol 252 (13) ◽  
pp. 4871-4876 ◽  
Author(s):  
E.J. Houser ◽  
D.B. Chrisey ◽  
M. Bercu ◽  
N.D. Scarisoreanu ◽  
A. Purice ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document