The Syntheses and Medicinal Attributes of Phenanthrenes as Anticancer Agents: A Quinquennial Update

2021 ◽  
Vol 28 ◽  
Author(s):  
Sarthak Jhingran ◽  
Kritika Laxmikeshav ◽  
Sayali Mone ◽  
Venkata Rao K ◽  
Nagula Shankaraiah

: Cancer is a silent killer and remains to pose major health problems globally. Amongst the several biological targets, DNA is one of the most striking targets in cancer chemotherapy. Owing to its planar structure, phenanthrene and its derivatives exhibit potential cytotoxicity by intercalating between the DNA base pairs and by inhibiting the enzymes that are involved in the synthesis of DNA. However, due to the off-target effects and resistance, the development of novel chemotherapeutic agents would be meritorious. In this regard, we detail in the review on the development of phenanthrene-based derivatives reported in the last quinquennial. This review mainly focuses on the synthetic aspects and strategies to procure the fused phenanthrene derivatives such as (i) phenanthroindolizidines, phenanthroquinolizidine, phenanthroimidazoles, podophyllotoxin-based phenanthrenes and dihydrophenanthrodioxine derivatives, (ii) phenanthrene conjugates with other pharmacologically significant pharmacophores and (iii) phenanthrene-metal complexes. This review also edifies their potential in vitro cytotoxicity evaluation against various carcinoma cell lines in submicromolar to nanomolar ranges. Additionally, computational studies and structure-activity relationships (SARs) have also been presented to highlight the essential features of the designed congeners. Thus, this review would aid in the development of novel derivatives in future as potential cytotoxic agents in the field of medicinal chemistry.

2020 ◽  
Vol 17 (2) ◽  
pp. 124-137 ◽  
Author(s):  
Adel Mahmoud Attia ◽  
Ahmed Ibrahin Khodair ◽  
Eman Abdelnasser Gendy ◽  
Mohammed Abu El-Magd ◽  
Yaseen Ali Mosa Mohamed Elshaier

Background:Perturbation of nucleic acids structures and confirmation by small molecules through intercalation binding is an intriguing application in anticancer therapy. The planar aromatic moiety of anticancer agents was inserted between DNA base pairs leading to change in the DNA structure and subsequent functional arrest.Objective:The final scaffold of the target compounds was annulated and linked to a benzotriazole ring. These new pharmacophoric features were examined as antiviral and anticancer agents against MCF7 and their effect on DNA damage was also assessed.Methods:A new series of fully substituted 2-oxopyridine/2-thioxopyridine derivatives tethered to a benzotriazole moiety (4a-h) was synthesized through Michael cyclization of synthesized α,β- unsaturated compounds (3a-e) with appropriate active methylene derivatives. The DNA damage study was assessed by comet assay. In silico DNA molecular docking was performed using Open Eye software to corroborate the experimental results and to understand molecule interaction at the atomic level.Results:The highest DNA damage was observed in Doxorubicin, followed by 4h, then, 4b, 4g, 4f, 4e, and 4d. The docking study showed that compound 4h formed Hydrogen Bonds (HBs) as a standard ligand with GSK-3. Compound 4h was the most active compound against rotavirus Wa, HAVHM175, and HSV strains with a reduction of 30%, 40%, and 70%, respectively.Conclusion:Compound 4h was the most active compound and could act as a prospective lead molecule for anticancer agent.


2021 ◽  
Vol 22 (19) ◽  
pp. 10258
Author(s):  
Mabrouk Horchani ◽  
Niels V. Heise ◽  
Sophie Hoenke ◽  
René Csuk ◽  
Abdel Halim Harrath ◽  
...  

To explore a new set of anticancer agents, a novel series of pyrazolo[4,3-e]pyrido[1,2-a]pyrimidine derivativeshave been designed and synthesized viacyclocondensation reactions of pyrazolo-enaminone with a series of arylidenemalononitriles; compound 5 was obtained from 5-amino-4-cyanopyrazole. The structures of the target compounds were investigated by spectral techniques and elemental analysis (IR, UV–Vis, 1H NMR, 13C NMR and ESI-MS). All compounds were evaluated for their in vitro cytotoxicity employing a panel of different human tumor cell lines, A375, HT29, MCF7, A2780, FaDu as well as non-malignant NIH 3T3 and HEK293 cells. It has been found that the pyrazolo-pyrido-pyrimidine analog bearing a 4-Br-phenyl moiety was the most active toward many cell lines with EC50 values ranging between 9.1 and 13.5 µM. Moreover, in silico docking studies of the latter with six anticancer drug targets, i.e., DHFR, VEGFR2, HER-2/neu, hCA-IX, CDK6 and LOX5, were also performed, in order to gain some insights into their putative mode of binding interaction and to estimate the free binding energy of this bioactive molecule.


Author(s):  
Mabrouk Horchani ◽  
Niels V. Heise ◽  
Sophie Hoenke ◽  
Rene Csuk ◽  
Abdel Halim Harrath ◽  
...  

To explore a new set of anticancer agents, a novel series of pyrazolo[4,3-e]pyrido[1,2-a]pyrimidine derivatives 7a-l have been designed and synthesized via cyclocondensation reactions of pyrazolo-enaminone 5 with a series of arylidene malononitriles; compound 5 was obtained from 5-amino-4-cyanopyrazole (3). The structures of the target compounds 7a-l were investigated by spectral techniques and elemental analysis (IR, UV-Vis, 1H NMR, 13C NMR and ESI-MS). All compounds were evaluated for their in vitro cytotoxicity employing a panel of different human tumor cell lines, A375, HT29, MCF7, A2780, FaDu as well as non-malignant NIH 3T3 and HEK293 cells. It has been found that the conjugate 7e was the most active towards many cell lines with EC50 values ranging between 9.1 and 13.5 µM, respectively. Moreover, in silico docking studies of 7e with six anticancer drug targets, i.e. DHFR, VEGFR2, HER-2/neu, hCA-IX, CDK6 and LOX also was performed, in order to gain some insights into their putative mode of binding interaction and to estimate the free binding energy of this bioactive molecule.


2018 ◽  
Vol 15 (2) ◽  
pp. 179-207
Author(s):  
Ashaparna Mondal ◽  
Priyankar Paira

Background: Currently ruthenium complexes are immerging as effective anticancer agents due to their less toxicity, better antiproliferative and antimetastatic activity, better stability in cellular environment and most importantly variable oxidation and co-ordination states of ruthenium allows binding this molecule with a variety of ligands. So in past few years researchers have shifted their interest towards organoruthenium complexes having good fluorescent profile that may be applicable for cancer theranostics. Nowadays, photodynamic therapy has become more acceptable because of its easy and effective approach towards killing cancer cells. Objective: Objective of this review article is to shed light on synthesis, characterization, stability and fluorescence studies of various ruthenium [Ru(II) and Ru(III)] complexes and different bioactivity studies conducted with the synthesized compounds to test their candidacy as potent chemotherapeutic agents. Methods: Various heterocyclic ligands containing N,O and S as heteroatom mainly were prepared and subjected to complexation with ruthenium-p-cymene moiety. In most cases [Ru(η6-p-cymene)(µ-Cl)Cl]2 was used as ruthenium precursor and the reactions were conducted in various alcohol medium such as methanol, ethanol or propanol. The synthesized complexes were characterized by 1H NMR and 13C NMR spectroscopy, GC-MS, ESI-MS, elemental analysis and single crystal X-ray crystallography methods. Fluorescence study and stability study were conducted accordingly using water, PBS buffer or DMSO. Stable compounds were considered for cell viability studies. To study the efficacy of the compounds in ROS generation as photosensitizers, in few cases, singlet oxygen quantum yields in presence of light were calculated. Suitable compounds were selected for in vitro & in vivo antiproliferative, anti-invasive activity studies. Result: Many newly synthesized compounds were found to have less IC50 compared to a standard drug cysplatin. Those compounds were also stable preferably in physiological conditions. Good fluorescence profile and ROS generation ability were observed for few compounds. Conclusion: Numerous ruthenium complexes were developed which can be used as cancer theranostic agents. Few molecules were synthesized as photosensitizers which were supposed to generate reactive singlet oxygen species in targeted cellular environment in presence of a particular type of light and thereby ceasing cancer cell growth.


2019 ◽  
Vol 19 (10) ◽  
pp. 1285-1292 ◽  
Author(s):  
Kuldip D. Upadhyay ◽  
Anamik K. Shah

Background: Quinoline analogues exhibited diversified biological activities depending on the structure type. A number of natural products with pyrano[3,2-c]quinolone structural motifs and patented chromenes were reported as promising cytotoxic agents. Objective: The present study is aimed to evaluate a new series of pyrano[3,2-c]quinoline scaffolds derived from the fusion of bioactive quinolone pharmacophore with structurally diverse aryl substituted chromene for its cytotoxicity. Methods: A library of pyrano[3,2-c]quinoline analogues was prepared from one-pot multi component synthesis using various aromatic aldehydes, malononitrile and 2,4-dihydroxy-1-methylquinoline. The new synthetics were primarily screened for its cytotoxicity (IC50) against different human cancer cell lines in vitro. The promising synthetics were further evaluated in vitro for their potency against different kinase activity. The promising compounds were finally tested for their in vivo efficacy in SCID type mice HCT-116 tumor model. Results: The screening results revealed that compounds 4c, 4f, 4i and 4j showed promising activity in in vitro study. However, compound 4c was found to be the most potent candidate with 23% tumor growth inhibition in HCT-116 tumor mice model. Conclusion: The structure activity relationship suggested that 3-substitution on the aryl ring at C4 position of the pyrano[3,2 c]quinolone moiety seems to have an important position for cytotoxicity activity. However, 3- chloro substitution at C4 aryl ring showed a significant alteration of the bioactive conformer of the parent scaffold and outcome with compound 4c as the most potent candidate of the series.


2020 ◽  
Vol 10 (5) ◽  
pp. 577-590
Author(s):  
Jai B. Sharma ◽  
Shailendra Bhatt ◽  
Asmita Sharma ◽  
Manish Kumar

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers. Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied. Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin. Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin. Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.


1988 ◽  
Vol 53 (9) ◽  
pp. 1943-1945
Author(s):  
Pavel Hobza ◽  
Camille Sandorfy

The interaction of the 6-O methylguanine cation with cytosine and thymine was studied using the ab initio SCF method in combination with a London type expression for dispersion energy. The structure of the complex formed with cytosine differs from that found previously with guanine itself.


MRS Advances ◽  
2020 ◽  
Vol 5 (16) ◽  
pp. 815-823
Author(s):  
Ian Sands ◽  
Jinhyung Lee ◽  
Wuxia Zhang ◽  
Yupeng Chen

AbstractRNA delivery into deep tissues with dense extracellular matrix (ECM) has been challenging. For example, cartilage is a major barrier for RNA and drug delivery due to its avascular structure, low cell density and strong negative surface charge. Cartilage ECM is comprised of collagens, proteoglycans, and various other noncollagneous proteins with a spacing of 20nm. Conventional nanoparticles are usually spherical with a diameter larger than 50-60nm (after cargo loading). Therefore, they presented limited success for RNA delivery into cartilage. Here, we developed Janus base nanotubes (JBNTs, self-assembled nanotubes inspired from DNA base pairs) to assemble with small RNAs to form nano-rod delivery vehicles (termed as “Nanopieces”). Nanopieces have a diameter of ∼20nm (smallest delivery vehicles after cargo loading) and a length of ∼100nm. They present a novel breakthrough in ECM penetration due to the reduced size and adjustable characteristics to encourage ECM and intracellular penetration.


Sign in / Sign up

Export Citation Format

Share Document