Inflammation and Innate Immune Response Against Viral Infections in Marine Fish

2010 ◽  
Vol 16 (38) ◽  
pp. 4175-4184 ◽  
Author(s):  
B. Novoa ◽  
S. Mackenzie ◽  
A. Figueras
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Päivi Ylä-Anttila

AbstractActivation of autophagy is part of the innate immune response during viral infections. Autophagy involves the sequestration of endogenous or foreign components from the cytosol within double-membraned vesicles and the delivery of their content to the lysosomes for degradation. As part of innate immune responses, this autophagic elimination of foreign components is selective and requires specialized cargo receptors that function as links between a tagged foreign component and the autophagic machinery. Pathogens have evolved ways to evade their autophagic degradation to promote their replication, and recent research has shown autophagic receptors to be an important and perhaps previously overlooked target of viral autophagy inhibition. This is a brief summary of the recent progress in knowledge of virus-host interaction in the context of autophagy receptors.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 279
Author(s):  
Ling Wang ◽  
Shunbin Ning

The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.


2021 ◽  
Author(s):  
Eric Warga ◽  
Matthew Tucker ◽  
Emily Harris ◽  
Jacob Elmer

The innate immune response to cytosolic DNA is intended to protect the host from viral infections, but it can also inhibit the delivery and expression of therapeutic transgenes in gene and cell therapies. The goal of this work was to use mRNA-sequencing to reveal correlations between the transfection efficiencies of four cell types (PC-3, Jurkat, HEK-293T, and primary CD3+ T cells) and their innate immune responses to nonviral gene delivery. Overall, the highest transfection efficiency was observed in HEK-293T cells (87%), which upregulated only 142 genes with no known anti-viral functions. Lipofection upregulated a much larger number (n = 1,057) of cytokine-stimulated genes (CSGs) in PC-3 cells, which also exhibited a significantly lower transfection efficiency. However, the addition of serum during Lipofection and electroporation significantly increased transfection efficiencies and decreased the number of upregulated genes in PC-3 cells. Finally, while Lipofection of Jurkat and Primary T cells only upregulated a few genes, several anti-viral CSGs that were absent in HEK and upregulated in PC-3 cells were observed to be constitutively expressed in T cells, which may explain their relatively low Lipofection efficiencies (8-21%). Indeed, overexpression of one such CSG (IFI16) significantly decreased transfection efficiency in HEK cells to 33%.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Girish J. Kotwal ◽  
Steven Hatch ◽  
William L. Marshall

The innate immune response is initiated by the interaction of stereotypical pathogen components with genetically conserved receptors for extracytosolic pathogen-associated molecular patterns (PAMPs) or intracytosolic nucleic acids. In multicellular organisms, this interaction typically clusters signal transduction molecules and leads to their activations, thereby initiating signals that activate innate immune effector mechanisms to protect the host. In some cases programmed cell death—a fundamental form of innate immunity—is initiated in response to genotoxic or biochemical stress that is associated with viral infection. In this paper we will summarize innate immune mechanisms that are relevant to viral pathogenesis and outline the continuing evolution of viral mechanisms that suppress the innate immunity in mammalian hosts. These mechanisms of viral innate immune evasion provide significant insight into the pathways of the antiviral innate immune response of many organisms. Examples of relevant mammalian innate immune defenses host defenses include signaling to interferon and cytokine response pathways as well as signaling to the inflammasome. Understanding which viral innate immune evasion mechanisms are linked to pathogenesis may translate into therapies and vaccines that are truly effective in eliminating the morbidity and mortality associated with viral infections in individuals.


Cell Stress ◽  
2021 ◽  
Vol 5 (9) ◽  
pp. 143-145
Author(s):  
Ebony A. Monson ◽  
Karla J. Helbig

When a host cell is infected by a virus, it activates the innate immune response, setting off a cascade of signalling events leading to the production of an antiviral response. This immune response is typically robust and in general works well to clear viral infections, however, viruses have evolved evasion strategies to combat this, and therefore, a better understanding of how this response works in more detail is needed for the development of novel and effective therapeutics. Lipid droplets (LDs) are intracellular organelles and have historically been thought of simply as cellular energy sources, however, have more recently been recognised as critical organelles in signalling events. Importantly, many viruses are known to take over host cellular production of LDs, and it has traditionally been assumed the sole purpose of this is to supply energy for viral life cycle events. However, our recent work positions LDs as important organelles during the first few hours of an antiviral response, showing that they underpin the production of important antiviral cytokines following viral infection. Following infection of cells with either RNA viruses (Zika, Dengue, Influenza A) or a DNA (Herpes Simplex Virus-1) virus, LDs were rapidly upregulated, and this response was also replicated following stimulation with viral mimic agonists. This upregulation of LDs following infection was transient, and interestingly, did not follow the well described homeostatic mechanism of LD upregulation, instead being controlled by EGFR. The cell’s ability to mount an effective immune response was greatly diminished when inhibiting EGFR, thus inhibiting LD upregulation during infection, also leading to an increase in viral replication. In this microreview, we extrapolate our recent findings and discuss LDs as an important organelle in the innate immune response.


Sign in / Sign up

Export Citation Format

Share Document