Poly(vinyl pyridine)s: A Versatile Polymer in Catalysis

2019 ◽  
Vol 23 (4) ◽  
pp. 439-479
Author(s):  
Nader Ghaffari Khaligh ◽  
Hanna S. Abbo ◽  
Mohd Rafie Johan ◽  
Salam J. J. Titinchi

The PVP and its derivatives have been broadly applied in polymers, organic syntheses, and catalysis processes. The crosslinked PVP is a well-known polymer support for numerous reagents and catalysts. Cross-linked PVPs are commercially available polymers and have attracted much attention over the past due to their interesting properties such as the facile functionalization, high accessibility of functional groups, being nonhygroscopic, easy to prepare, easy filtration, and swelling in many organic solvents. A brief explanation of the reported applications of PVPs in different fields followed by the discussion on the implementation of methodologies for catalytic efficiency of PVP-based reagents in the organic synthesis is included. The aim is to summarize the literature under a few catalytic categories and to present each as a short scheme involving reaction conditions. In the text, discussions on the synthesis and the structural determination of some typical polymeric reagents are presented, and the mechanisms of some organic reactions are given. Where appropriate, advantages of reagents in comparison with the previous reports are presented. This review does not include patent literature.

1973 ◽  
Vol 51 (15) ◽  
pp. 2452-2456 ◽  
Author(s):  
Jack Y. Wong ◽  
Clifford C. Leznoff

An insoluble polymer support system was used as a unique method of blocking one functional group of a completely symmetrical difunctional compound. The monotetrahydropyranyl and monotrityl ethers of the symmetrical diols, HO—(CH2)n—OH, where n = 2,4,6,8, and 10, were prepared. Reaction conditions for the preparation of the monotetrahydropyranyl ether of 1,10-decanediol were optimized.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 359
Author(s):  
Bo Xu ◽  
Xiaotian Shi ◽  
Xiang Liu ◽  
Hua Cao

Chiral cyclic molecules are some of the most important compounds in nature, and are widely used in the fields of drugs, materials, synthesis, etc. Enantioselective photocatalysis has become a powerful tool for organic synthesis of chiral cyclic molecules. Herein, this review summarized the research progress in the synthesis of chiral cyclic compounds by photocatalytic cycloaddition reaction in the past 5 years, and expounded the reaction conditions, characters, and corresponding proposed mechanism, hoping to guide and promote the development of this field.


2020 ◽  
Vol 07 ◽  
Author(s):  
Rajib Sarkar ◽  
Chhanda Mukhopadhyay

Abstract:: The use of small organic molecules as organocatalysts in organic synthesis has intensely studied over the past decade. In this emerging field, considerable study has led to the introduction of various efficient organocatalyzed synthetic methods of carbon-carbon and carbon-hetero atom bond formations. The use of these organocatalysts also emerged environmentally benign reaction conditions compared to the metal catalyzed transformations. In this review, we make a special attention on the most recent organocatalytic protocols reported for the synthesis of heterocycles. The works have been outlined by depending on the organocatalysts used as (i) nitrogen based molecules as organocatalyst, (ii) NHCs as organocatalyst, and (iii) phosphorus based molecules as organocatalyst. The discussion intends to reveal the scope as well as vitality of organocatalysis in the area of heterocycle synthesis.


Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
Alex L. Bagdasarian ◽  
Stasik Popov ◽  
Benjamin Wigman ◽  
Wenjing Wei ◽  
woojin lee ◽  
...  

Herein we report the 3,5bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C–H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C–H insertion and Friedel–Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C–O bonds. Despite the highly Lewis acidic nature of these catalysts that enables triflate abstraction from sp<sup>2</sup> carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.<br>


2020 ◽  
Author(s):  
Alex L. Bagdasarian ◽  
Stasik Popov ◽  
Benjamin Wigman ◽  
Wenjing Wei ◽  
woojin lee ◽  
...  

Herein we report the 3,5bistrifluoromethylphenyl urea-catalyzed functionalization of unactivated C–H bonds. In this system, the urea catalyst mediates the formation of high-energy vinyl carbocations that undergo facile C–H insertion and Friedel–Crafts reactions. We introduce a new paradigm for these privileged scaffolds where the combination of hydrogen bonding motifs and strong bases affords highly active Lewis acid catalysts capable of ionizing strong C–O bonds. Despite the highly Lewis acidic nature of these catalysts that enables triflate abstraction from sp<sup>2</sup> carbons, these newly found reaction conditions allow for the formation of heterocycles and tolerate highly Lewis basic heteroaromatic substrates. This strategy showcases the potential utility of dicoordinated vinyl carbocations in organic synthesis.<br>


2020 ◽  
Vol 24 ◽  
Author(s):  
Bubun Banerjee ◽  
Gurpreet Kaur ◽  
Navdeep Kaur

: Metal-free organocatalysts are becoming an important tool for the sustainable developments of various bioactive heterocycles. On the other hand, during last two decades, calix[n]arenes have been gaining considerable attention due to their wide range of applicability in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n] arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive scaffolds. In this review we have summarized the catalytic efficiency of p-sulfonic acid calix[n]arenes for the synthesis of diverse biologically promising scaffolds under various reaction conditions. There is no such review available in the literature showing the catalytic applicability of p-sulfonic acid calix[n]arenes. Therefore, we strongly believe that this review will surely attract those researchers who are interested about this fascinating organocatalyst.


2019 ◽  
Vol 23 (11) ◽  
pp. 1214-1238 ◽  
Author(s):  
Navjeet Kaur ◽  
Pranshu Bhardwaj ◽  
Meenu Devi ◽  
Yamini Verma ◽  
Neha Ahlawat ◽  
...  

Due to special properties of ILs (Ionic Liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environment friendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. The investigation for the replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. In comparison to traditional processes the use of ionic liquids resulted in improved, complimentary or alternative selectivities in organic synthesis. The present manuscript reported the synthesis of multiple nitrogen containing five-membered heterocyclic compounds using ionic liquids. This review covered interesting discoveries in the past few years.


2019 ◽  
Vol 16 (2) ◽  
pp. 258-275 ◽  
Author(s):  
Navjeet Kaur

Background:A wide variety of biological activities are exhibited by N, O and S containing heterocycles and recently, many reports appeared for the synthesis of these heterocycles. The synthesis of heterocycles with the help of metal and non-metal catalyst has become a highly rewarding and important method in organic synthesis. This review article concentrated on the synthesis of S-heterocylces in the presence of metal and non-metal catalyst. The synthesis of five-membered S-heterocycles is described here.Objective:There is a need for the development of rapid, efficient and versatile strategy for the synthesis of heterocyclic rings. Metal, non-metal and organocatalysis involving methods have gained prominence because traditional conditions have disadvantages such as long reaction times, harsh conditions and limited substrate scope.Conclusion:The metal-, non-metal-, and organocatalyst assisted organic synthesis is a highly dynamic research field. For ßthe chemoselective and efficient synthesis of heterocyclic molecules, this protocol has emerged as a powerful route. Various methodologies in the past few years have been pointed out to pursue more sustainable, efficient and environmentally benign procedures and products. Among these processes, the development of new protocols (catalysis), which avoided the use of toxic reagents, are the focus of intense research.


Author(s):  
Richard Adelstein

This chapter elaborates the operation of criminal liability by closely considering efficient crimes and the law’s stance toward them, shows how its commitment to proportional punishment prevents the probability scaling that systemically efficient allocation requires, and discusses the procedures that determine the actual liability prices imposed on offenders. Efficient crimes are effectively encouraged by proportional punishment, and their nature and implications are examined. But proportional punishment precludes probability scaling, and induces far more than the systemically efficient number of crimes. Liability prices that match the specific costs imposed by the offender at bar are sought through a two-stage procedure of legislative determination of punishment ranges ex ante and judicial determination of exact prices ex post, which creates a dilemma: whether to price crimes accurately in the past or deter them accurately in the future. An illustrative Supreme Court case bringing all these themes together is discussed in conclusion.


Sign in / Sign up

Export Citation Format

Share Document