Separation of Nucleic Acids Using Single- and Multimodal Chromatography

2018 ◽  
Vol 20 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Tiago Matos ◽  
Leif Bülow

The needs for purified nucleic acids for preparative and analytical applications have increased constantly, demanding for the development of new and more efficient methods for their recovery and isolation. DNA molecules harbour some intrinsic chemical properties that render them suitable for chromatographic separations. These include a negatively charged phosphate backbone as well as a hydrophobic character originating mainly from the major groove of DNA which exposes the base pairs on the surface of the molecule. In addition, single stranded DNA often allows for a free exposure of the hydrophobic aromatic bases. In this review, multimodal chromatography (MMC) has been evaluated as an alternative tool for complex separations of nucleic acids. MMC embraces more than one kind of interaction between the chromatographic ligand and the target molecules. These resins have often proved superior to conventional single-mode chromatographic materials for DNA isolation, including, e.g., the purification of plasmid DNA from crude cell lysates and for the preparation of DNA fragments before or after a polymerase chain reaction (PCR).

1991 ◽  
Vol 58 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Franco Rollo ◽  
Franco Maria Venanzi ◽  
Augusto Amici

SummaryNucleic acids fractions were isolated from pre-Columbian maize seeds and characterized using different approaches such as polyacrylamide gel electrophoresis, anti-DNA antibody binding, HPLC fractionation, molecular hybridization with cloned genes, and DNA amplification by the polymerase chain reaction. The nucleic acids were found to be very depolymerized (≤140 base pairs in length) and composed mainly of ribosomal RNA. Despite the very low amount and degree of polymerization of seed DNA, specific maize nuclear Mul, Mu4, Mu8 and, possibly, Mu5 element components could be detected, thanks to the use of amplification systems as short as 90 bp. The results suggest that evaluation of the relative proportions of Mu-type element components and, possibly, other maize genomic components in single mummified kernels, may offer a new key to the study of ancient maize populations.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 346
Author(s):  
Kevin G Devine ◽  
Sohan Jheeta

Modern terran life uses several essential biopolymers like nucleic acids, proteins and polysaccharides. The nucleic acids, DNA and RNA are arguably life’s most important, acting as the stores and translators of genetic information contained in their base sequences, which ultimately manifest themselves in the amino acid sequences of proteins. But just what is it about their structures; an aromatic heterocyclic base appended to a (five-atom ring) sugar-phosphate backbone that enables them to carry out these functions with such high fidelity? In the past three decades, leading chemists have created in their laboratories synthetic analogues of nucleic acids which differ from their natural counterparts in three key areas as follows: (a) replacement of the phosphate moiety with an uncharged analogue, (b) replacement of the pentose sugars ribose and deoxyribose with alternative acyclic, pentose and hexose derivatives and, finally, (c) replacement of the two heterocyclic base pairs adenine/thymine and guanine/cytosine with non-standard analogues that obey the Watson–Crick pairing rules. This manuscript will examine in detail the physical and chemical properties of these synthetic nucleic acid analogues, in particular on their abilities to serve as conveyors of genetic information. If life exists elsewhere in the universe, will it also use DNA and RNA?


2013 ◽  
Vol 137 (4) ◽  
pp. 525-530 ◽  
Author(s):  
Barbara L. Voss ◽  
Kristine Santiano ◽  
Mary Milano ◽  
Kathy A. Mangold ◽  
Karen L. Kaul

Context.—Recently, robotic-assisted laparoscopic prostatectomy has replaced open retropubic radical prostatectomy as the surgical procedure of choice. This less-invasive approach offers many advantages but exposes prostate tissue to longer periods of warm ischemia that may affect subsequent analysis of biomarkers. Objective.—To analyze the nucleic acid quality and quantity isolated from open versus laparoscopic prostatectomies. Design.—Nucleic acids were isolated from 10 open-obtained and 10 laparoscopic-obtained tissues stored in our prostate sample repository. Nucleic acid integrity was assessed via electrophoresis and polymerase chain reaction amplification of RNA and DNA targets ranging in size from 125 to 939 base pairs. Results.—The DNA yield, integrity, and polymerase chain reaction amplification were identical between samples obtained from both surgical approaches. The RNA integrity number and yield were similar, as was β-2 microglobulin mRNA amplification up to 652 base pairs. However, 2 of 10 samples (20%) collected robotically showed decreased real-time reverse transcriptase-polymerase chain reaction amplification of prostate-specific antigen messenger RNA, especially with targets larger than 300 base pairs. Conclusions.—Generally, the quality and quantity of nucleic acids isolated from prostate tissue obtained via open or laparoscopic approaches are equivalent, suggesting that procurement of tissues is appropriate from either procedure. However, some loss of reverse transcriptase-polymerase chain reaction amplification of larger RNA targets was noted in the laparoscopic samples; appropriate design of assays to keep amplicon sizes small and the use of internal controls to assess RNA integrity is recommended.


1991 ◽  
Vol 66 (04) ◽  
pp. 500-504 ◽  
Author(s):  
H Peretz ◽  
U Seligsohn ◽  
E Zwang ◽  
B S Coller ◽  
P J Newman

SummarySevere Glanzmann's thrombasthenia is relatively frequent in Iraqi-Jews and Arabs residing in Israel. We have recently described the mutations responsible for the disease in Iraqi-Jews – an 11 base pair deletion in exon 12 of the glycoprotein IIIa gene, and in Arabs – a 13 base pair deletion at the AG acceptor splice site of exon 4 on the glycoprotein IIb gene. In this communication we show that the Iraqi-Jewish mutation can be identified directly by polymerase chain reaction and gel electrophoresis. With specially designed oligonucleotide primers encompassing the mutation site, an 80 base pair segment amplified in healthy controls was clearly distinguished from the 69 base pair segment produced in patients. Patients from 11 unrelated Iraqi-Jewish families had the same mutation. The Arab mutation was identified by first amplifying a DNA segment consisting of 312 base pairs in controls and of 299 base pairs in patients, and then digestion by a restriction enzyme Stu-1, which recognizes a site that is absent in the mutant gene. In controls the 312 bp segment was digested into 235 and 77 bp fragments, while in patients there was no change in the size of the amplified 299 bp segment. The mutation was found in patients from 3 out of 5 unrelated Arab families. Both Iraqi-Jewish and Arab mutations were detectable in DNA extracted from blood and urine samples. The described simple methods of identifying the mutations should be useful for detection of the numerous potential carriers among the affected kindreds and for prenatal diagnosis using DNA extracted from chorionic villi samples.


2021 ◽  
Author(s):  
David Dayanidhi Paul Elisa Sundar ◽  
Vaidyanathan Ganesan

Studies on the binding interaction of small molecules and nucleic acids have been explored for their biological applications. With excellent photophysical/chemical properties, numerous metal complexes have been studied as structural...


2007 ◽  
Vol 31 (1) ◽  
pp. 21-24 ◽  
Author(s):  
Eva Corral ◽  
Huub Kooijman ◽  
Anthony L. Spek ◽  
Jan Reedijk

2021 ◽  
Vol 4 (4) ◽  
pp. 281-289
Author(s):  
Paul Isaac Ojodale ◽  
Helen Ileigo Inabo ◽  
Elijah Ekah Ella ◽  
Oluyinka Oluseyi Okubanjo

Trichinellosis is an important food-borne zoonotic disease with public health implications and a worldwide distribution. In this study, Polymerase Chain Reaction (PCR) procedure using species specific ATP6 primers was used to detect the presence of migratory Trichinella spiralis larval mitochondrial ATP6 synthase F0 subunit (ATP6) gene, after detection of antibodies to Trichinella excretory-secretory (E/S) antigen using Enzyme-linked Immunosorbent Assay (ELISA), in blood of humans in Kaduna metropolis, Nigeria. The sera of 210 participants were tested for antibodies to Trichinella E/S antigen. Overall seroprevalence rate of 39% (82/210) was recorded using ELISA. Out of the 9 ELISA samples selected randomly, PCR detected migratory Trichinella spiralis larval ATP6 gene in 4 (44.4%) at the amplicon size of 250 base pairs using the whole blood of the participants.  The 9 samples comprised 7 seropositive and 2 seronegative. The bands at lanes 1, 2, 3 and 4 were positive for ATP6 while lanes 5,6,7,8 and 9 were negative for ATP6.  Lanes 4 and 5 were ELISA negative for anti-Trichinella antibodies. One in 5 of the 128 ELISA negative samples was positive for ATP6 representing a 25.6% prevalence rate by extrapolation.  PCR using ATP6 gene as a genetic marker is valuable for the detection of T. spiralis migratory larvae in blood samples of humans and consequently the early diagnosis of trichinellosis in humans.


Sign in / Sign up

Export Citation Format

Share Document