scholarly journals Phytochemicals and Potential Therapeutic Targets on Toxoplasma gondii Parasite

2020 ◽  
Vol 20 (9) ◽  
pp. 739-753
Author(s):  
Sharif Alhassan Abdullahi ◽  
Ngah Zasmy Unyah ◽  
Noshariza Nordin ◽  
Rusliza Basir ◽  
Wana Mohammed Nasir ◽  
...  

Identification of drug target in protozoan T. gondii is an important step in the development of chemotherapeutic agents. Likewise, exploring phytochemical compounds effective against the parasite can lead to the development of new drug agent that can be useful for prophylaxis and treatment of toxoplasmosis. In this review, we searched for the relevant literature on the herbs that were tested against T. gondii either in vitro or in vivo, as well as different phytochemicals and their potential activities on T. gondii. Potential activities of major phytochemicals, such as alkaloid, flavonoid, terpenoids and tannins on various target sites on T. gondii as well as other related parasites was discussed. It is believed that the phytochemicals from natural sources are potential drug candidates for the treatment of toxoplasmosis with little or no toxicity to humans.

Brain ◽  
2019 ◽  
Vol 142 (12) ◽  
pp. 3852-3867 ◽  
Author(s):  
Philippa Pettingill ◽  
Greg A Weir ◽  
Tina Wei ◽  
Yukyee Wu ◽  
Grace Flower ◽  
...  

The two-pore potassium channel TRESK is a potential drug target in pain and migraine. Pettingill et al. show that the F139WfsX2 mutation causes TRESK loss of function and hyperexcitability in nociceptors derived from iPSCs of patients with migraine. Cloxyquin, a TRESK activator, reverses migraine-relevant phenotypes in vitro and in vivo.


2001 ◽  
Vol 45 (6) ◽  
pp. 1743-1745 ◽  
Author(s):  
Graham H. Coombs ◽  
Jeremy C. Mottram

ABSTRACT Methionine γ-lyase, the enzyme which catalyzes the single-step conversion of methionine to α-ketobutyrate, ammonia, and methanethiol, is highly active in many anaerobic pathogenic microorganisms but has no counterpart in mammals. This study tested the hypothesis that this pathogen-specific enzyme can be exploited as a drug target by prodrugs that are exclusively activated by it. Trifluoromethionine was confirmed as such a prodrug and shown to be highly toxic in vitro to the anaerobic protozoan parasiteTrichomonas vaginalis, to anaerobic bacteria containing methionine γ-lyase, and to Escherichia coli expressing the trichomonad gene. The compound also has exceptional activity against the parasite growing in vivo, with a single dose preventing lesion formation in five of the six mice challenged. These findings suggest that trifluoromethionine represents a lead compound for a novel class of anti-infective drugs with potential as chemotherapeutic agents against a range of prokaryotic and eukaryotic anaerobic pathogens.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 514 ◽  
Author(s):  
Bruno Silva Andrade ◽  
Preetam Ghosh ◽  
Debmalya Barh ◽  
Sandeep Tiwari ◽  
Raner José Santana Silva ◽  
...  

Background: SARS-CoV-2 is the causal agent of the current coronavirus disease 2019 (COVID-19) pandemic. They are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly, and pathogenicity. The approximately 33.8 kDa Mpro protease of SARS-CoV-2 is a non-human homologue and is highly conserved among several coronaviruses, indicating that Mpro could be a potential drug target for Coronaviruses. Methods: Herein, we performed computational ligand screening of four pharmacophores (OEW, remdesivir, hydroxychloroquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7), and also screened 50,000 natural compounds from the ZINC Database dataset against this protease target. Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 11 best selected ligands, namely ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as beta-carboline, alkaloids, and polyflavonoids, and all displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as other known ligands. Conclusions: Our results suggest that these 11 molecules could be effective against SARS-CoV-2 protease and may be subsequently tested in vitro and in vivo to develop novel drugs against this virus.


Author(s):  
Bruno Andrade ◽  
Preetam Ghosh ◽  
Debmalya Barth ◽  
Sandeep Tiwari ◽  
Raner José Santana Silva ◽  
...  

Background: SARS-CoV-2 that are the causal agent of a current pandemic are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly and pathogenicity. The ~33.8KDa Mpro protease of SARS-CoV-2 is a non-human homologue and highly conserved among several coronaviruses indicating Mpro could be a potential drug target for Coronaviruses.Methods: Here we performed computational ligand screening of four pharmacophores (OEW, Remdesivir, Hydroxycholoquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7) and also screened 50,000 molecules from the ZINC Database dataset against this protease target.Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 10 best selected ligands namely, ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as β-carboline, Alkaloids and Polyflavonoids, and all of them displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as with other known ligands.Conclusion: Our results suggest that these 10 molecules could be effective against SARS-CoV-2 protease and may be tested in vitro and in vivo to develop novel drugs against this virus.


Author(s):  
Bruno Andrade ◽  
Preetam Ghosh ◽  
Debmalya Barth ◽  
Sandeep Tiwari ◽  
Raner José Santana Silva ◽  
...  

Background: SARS-CoV-2 that are the causal agent of a current pandemic are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly and pathogenicity. The ~33.8KDa Mpro protease of SARS-CoV-2 is a non-human homologue and highly conserved among several coronaviruses indicating Mpro could be a potential drug target for Coronaviruses.Methods: Here we performed computational ligand screening of four pharmacophores (OEW, Remdesivir, Hydroxycholoquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7) and also screened 50,000 molecules from the ZINC Database dataset against this protease target.Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 10 best selected ligands namely, ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as β-carboline, Alkaloids and Polyflavonoids, and all of them displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as with other known ligands.Conclusion: Our results suggest that these 10 molecules could be effective against SARS-CoV-2 protease and may be tested in vitro and in vivo to develop novel drugs against this virus.


2019 ◽  
Vol 24 (4) ◽  
pp. 476-483 ◽  
Author(s):  
Il Doh ◽  
Yong-Jun Kwon ◽  
Bosung Ku ◽  
Dong Woo Lee

Hepatocellular carcinoma (HCC), a major histological subtype of liver cancer, is the third most common cause of cancer-related death worldwide. Currently, many curative standard treatments using target-specific chemotherapeutic agents are being developed. However, drug efficacy tests based on the 2D monolayer cell culture model do not effectively screen the best drug candidates because they do not accurately reflect in vivo tumor microenvironments. Thus, to select the best drug candidates or repositioning drugs, we developed new 3D in vitro hepatic tumor models, including 3D forming and preformed sphere models. A micropillar and microwell chip platform was used for the 3D in vitro liver cell-based model for high-throughput screening. We measured the efficacy of 60 drugs and sorted the most efficacious drugs by comparing the drug response of the 2D monolayer model with the 3D forming and preformed sphere models. Among the 60 drugs, 17 drugs (28.3%) showed a significant high efficacy in the 3D preformed sphere model, while 45 drugs (75%) showed an efficacy in the 2D model. We also calculated the IC50 values of the 17 drugs and found that 7 drugs exhibited a high sensitivity in HCC, which was in agreement with previous studies.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 550 ◽  
Author(s):  
Gaber El-Saber Batiha ◽  
Amany Magdy Beshbishy ◽  
Oluyomi Stephen Adeyemi ◽  
Eman Hassan Nadwa ◽  
Eman kadry Mohamed Rashwan ◽  
...  

Berberis vulgaris (B. vulgaris) and Rhus coriaria (R. coriaria) have been documented to have various pharmacologic activities. The current study assessed the in vitro as well as in vivo inhibitory efficacy of a methanolic extract of B. vulgaris (MEBV) and an acetone extract of R. coriaria (AERC) on six species of piroplasm parasites. The drug-exposure viability assay was tested on three different cell lines, namely mouse embryonic fibroblast (NIH/3T3), Madin-Darby bovine kidney (MDBK) and human foreskin fibroblast (HFF) cells. Qualitative phytochemical estimation revealed that both extracts containing alkaloid, tannin, saponins and terpenoids and significant amounts of flavonoids and polyphenols. The GC-MS analysis of MEBV and AERC revealed the existence of 27 and 20 phytochemical compounds, respectively. MEBV and AERC restricted the multiplication of Babesia (B.) bovis, B. bigemina, B. divergens, B. caballi, and Theileria (T.) equi at the half-maximal inhibitory concentration (IC50) of 0.84 ± 0.2, 0.81 ± 0.3, 4.1 ± 0.9, 0.35 ± 0.1 and 0.68 ± 0.1 µg/mL and 85.7 ± 3.1, 60 ± 8.5, 90 ± 3.7, 85.7 ± 2.1 and 78 ± 2.1 µg/mL, respectively. In the cytotoxicity assay, MEBV and AERC inhibited MDBK, NIH/3T3 and HFF cells with half-maximal effective concentrations (EC50) of 695.7 ± 24.9, 931 ± 44.9, >1500 µg/mL and 737.7 ± 17.4, >1500 and >1500 µg/mL, respectively. The experiments in mice showed that MEBV and AERC prohibited B. microti multiplication at 150 mg/kg by 66.7% and 70%, respectively. These results indicate the prospects of these extracts as drug candidates for piroplasmosis treatment following additional studies in some clinical cases.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 514
Author(s):  
Bruno Silva Andrade ◽  
Preetam Ghosh ◽  
Debmalya Barh ◽  
Sandeep Tiwari ◽  
Raner José Santana Silva ◽  
...  

Background: SARS-CoV-2 is the causal agent of the current coronavirus disease 2019 (COVID-19) pandemic. They are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly, and pathogenicity. The approximately 33.8 kDa Mpro protease of SARS-CoV-2 is a non-human homologue and is highly conserved among several coronaviruses, indicating that Mpro could be a potential drug target for Coronaviruses. Methods: Herein, we performed computational ligand screening of four pharmacophores (OEW, remdesivir, hydroxychloroquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7), and also screened 50,000 natural compounds from the ZINC Database dataset against this protease target. Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 11 best selected ligands, namely ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as beta-carboline, alkaloids, and polyflavonoids, and all displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as other known ligands. Conclusions: Our results suggest that these 11 molecules could be effective against SARS-CoV-2 protease and may be subsequently tested in vitro and in vivo to develop novel drugs against this virus.


Sign in / Sign up

Export Citation Format

Share Document