Ionic Liquid Promoted Eco-friendly and Efficient Synthesis of Six-membered Npolyheterocycles

2018 ◽  
Vol 15 (8) ◽  
pp. 1124-1146 ◽  
Author(s):  
Navjeet Kaur

Background: The synthesis of N-polyheterocycles by environmentally benign method is highly attractive but challenging proposition. New strategies have been developed for the preparation of polycyclic heterocycles in the last decades. In this review article, the synthesis of nitrogen containing six-membered polycyclic heterocyclic compounds is presented with the application of ionic liquids. This contribution focuses on the literature related to the total synthesis of six-membered N-polyheterocycles. Objective: Ionic liquids not only acted as environmentally benign reaction media but also as catalysts which afforded the very promising replacements of traditional molecular solvents in organic chemistry due to their stability, non-flammability, non-volatility and ease of recyclability. Ionic liquids are utilized in metal catalyzed reactions in place of organic solvents in the last years. It has attracted considerable attention in recent years. Ionic liquids acted as alternatives of organic solvents and these ILs are environment friendly. Conclusion: In the area of green chemistry ionic liquid assisted synthesis is a very promising technique which afforded a flexible platform for the formation of heterocycles. The influence of ILs on the development of efficient and new synthetic protocols over the last decade for the construction of N-polyheterocycles is featured in this review article. These synthetic strategies will continue to attract more attention and will find a wide range of applications in organic synthesis. In conclusion, ionic liquids assisted syntheses have become an efficient and powerful tool in organic chemistry quickly.

2018 ◽  
Vol 21 (1) ◽  
pp. 14-18
Author(s):  
Ashraf S. Shahvelayati ◽  
Maryam Ghazvini ◽  
Khadijeh Yadollahzadeh ◽  
Akram S. Delbari

Background: The development of multicomponent reactions (MCRs) in the presence of task-specific ionic liquids (ILs), used not only as environmentally benign reaction media, but also as catalysts, is a new approach that meet with the requirements of sustainable chemistry. In recent years, the use of ionic liquids as a green media for organic synthesis has become a chief study area. This is due to their unique properties such as non-volatility, non-flammability, chemical and thermal stability, immiscibility with both organic compounds and water and recyclability. Ionic liquids are used as environmentally friendly solvents instead of hazardous organic solvents. Objective: We report the condensation reaction between α-oximinoketone and dialkyl acetylene dicarboxylate in the presence of triphenylphosphine to afford substituted pyrroles under ionic liquid conditions in good yields. Result: Densely functionalized pyrroles was easily prepared from reaction of α-oximinoketones, dialkyl acetylene dicarboxylate in the presence of triphenylphosphine in a quantitative yield under ionic liquid conditions at room temperature. Conclusion: In conclusion, ionic liquids are indicated as a useful and novel reaction medium for the selective synthesis of functionalized pyrroles. This reaction medium can replace the use of hazardous organic solvents. Easy work-up, synthesis of polyfunctional compounds, decreased reaction time, having easily available-recyclable ionic liquids, and good to high yields are advantages of present method.


2020 ◽  
Vol 24 (3) ◽  
pp. 231-264 ◽  
Author(s):  
Kevin H. Shaughnessy

Phosphines are widely used ligands in transition metal-catalyzed reactions. Arylphosphines, such as triphenylphosphine, were among the first phosphines to show broad utility in catalysis. Beginning in the late 1990s, sterically demanding and electronrich trialkylphosphines began to receive attention as supporting ligands. These ligands were found to be particularly effective at promoting oxidative addition in cross-coupling of aryl halides. With electron-rich, sterically demanding ligands, such as tri-tertbutylphosphine, coupling of aryl bromides could be achieved at room temperature. More importantly, the less reactive, but more broadly available, aryl chlorides became accessible substrates. Tri-tert-butylphosphine has become a privileged ligand that has found application in a wide range of late transition-metal catalyzed coupling reactions. This success has led to the use of numerous monodentate trialkylphosphines in cross-coupling reactions. This review will discuss the general properties and features of monodentate trialkylphosphines and their application in cross-coupling reactions of C–X and C–H bonds.


2015 ◽  
Vol 10 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Prasanta Kumar Mohapatra

Abstract This review article gives a comprehensive account of the extraction of actinide ions using room temperature ionic liquid-based solvent systems containing diglycolamide (DGA) or functionalized DGA extractants. These extractants include multiple DGA-functionalized ligands such as tripodal DGA (T-DGA) and DGA-functionalized calix [4]arenes (C4DGA). Apart from metal ion extraction behaviour, other important features of the ionic liquid-based solvent systems such as separation behaviour, luminescence spectroscopic results, thermodynamics of extraction and radiolytic stability of the ionic liquid-based solvents are also reviewed. Results from studies on DGA-functionalized task-specific ionic liquids (TSIL) are also included in this review article.


2021 ◽  
Vol 08 ◽  
Author(s):  
Maryam Shirzad ◽  
Mitra Nasiri ◽  
Nader Daneshvar ◽  
Farhad Shirini ◽  
Hassan Tajik

Aim and objective: In this work, we have prepared two bis-dicationic ionic liquids with the same cationic core (Bis-imidazole) and different counter-anions using sulfuric acid and perchloric acids. After that, the efficiency and ability of these compounds as catalysts were investigated and compared in the promotion of Knoevenagel condensation and synthesis of benzo[b]pyran derivatives to see the effect of the anionic counter-part in the reaction. Material and method: In a 25 mL round-bottomed flask, a mixture of aldehyde (1.0 mmol), 1,3-cyclodicarbonyl (2.0 mmol) and the desired amount of the mentioned acidic ionic liquids was heated at 90°C in the absence of solvent (Reaction A) or In a 25 mL round-bottomed flask, a mixture of aldehyde (1.0 mmol), 1,3-cyclodicarbonyl (1.0 mmol), malononitrile, (1.1 mmol) and optimized amounts of the ionic liquid in water (3.0 mL) was heated at 80°C (Reaction B) for the appropriated time. After the completion of the reactions which were monitored by TLC (n-hexane: EtOAc; 3:1), 10 mL of water was added and the mixture was stirred for 2 minutes. Then, the products were separated by filtration and were washed several times with water. After drying, the pure products were obtained while there was no need to further. Results: Comparison of the obtained results from both of the ionic liquids revealed that [H2-Bisim][HSO4]2 because of its more acidic structure had a more catalytic activity for the preparation of 1,8-dioxo-octahydro-xanthene derivatives but [H2-Bisim][ClO4]2 was relatively more efficient for the synthesis of tetrahydrobenzo[b]pyran derivatives since the stronger acidic nature of [H2-Bisim][HSO4]2 may prevent the simple activation of malononitrile in the reaction media. Conclusion: In this study, we have introduced efficient methods for the synthesis of 1,8-dioxo-octahydro-xanthene and tetrahydrobenzo[b]pyran derivatives in the presence of catalytic amounts of [H2-Bisim][ClO4]2 and [H2-Bisim][HSO4]2 These methods have several advantages such as ease of preparation and handling of the catalysts, high reaction rates, excellent yields, eco-friendly procedures and simple work-up.


Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 80 ◽  
Author(s):  
Karolina Matuszek ◽  
Ewa Pankalla ◽  
Aleksander Grymel ◽  
Piotr Latos ◽  
Anna Chrobok

Low solubility of terephthalic acid in common solvents makes its industrial production very difficult and not environmentally benign. Ionic liquids are known for their extraordinary solvent properties, with capability to dissolve a wide variety of materials, from common solvents to cellulose, opening new possibilities to find more suitable solvents for terephthalic acid. This work presents studies on the solubility of terephthalic acid in ionic liquids, and demonstrates that terephthalic acid is soluble in ionic liquids, such as 1-ethyl-3-methylimidazolium diethylphosphate, 1-butyl-3-methylimidazolium acetate, and dialkylimidazolium chlorides up to four times higher than in DMSO. Additionally, the temperature effect and correlation of ionic liquid structure with solubility efficiency are discussed.


2013 ◽  
Vol 66 (4) ◽  
pp. 470 ◽  
Author(s):  
Jason G. Taylor ◽  
Jailton Ferrari

The search for efficient and versatile reaction medium to perform transition-metal-catalyzed reactions is a continuous challenge to the synthetic community. Organic solvents have been traditionally employed for this task, nevertheless, new environmentally friendly, safe, and economically viable alternatives are still highly sought after. In this context, herein, we present an overview of some interesting applications of aqueous microemulsions (oil-in-water, O/W) for transition metal catalyzed reactions as an alternative and promising aqueous-organic reaction medium that has been found to be a highly effective tool in overcoming some environmental or practical issues presented by traditional organic solvents.


2005 ◽  
Vol 83 (1) ◽  
pp. 16-20 ◽  
Author(s):  
Xuesen Fan ◽  
Xueyuan Hu ◽  
Xinying Zhang ◽  
Jianji Wang

A green procedure for the synthesis of xanthenedione derivatives (3) through InCl3·4H2O-promoted condensation of aldehydes (1) and 5,5-dimethyl-1,3-cyclohexanedione (2) in ionic liquids is described in this paper. This novel method has such advantages as operational simplicity and environmental benignancy together with enhanced atom utilization. Moreover, the reaction media and the catalyst can be recovered conveniently and reused effectively for at least six times.Key words: ionic liquid, xanthenedione derivatives, indium trichloride, green synthesis.


Sign in / Sign up

Export Citation Format

Share Document