Synthesis and Biological Evaluation of Some Novel Thiophene-bearing Quinazoline Derivatives as EGFR Inhibitors

2018 ◽  
Vol 16 (2) ◽  
pp. 102-110 ◽  
Author(s):  
Min Zou ◽  
Bo Jin ◽  
Yanrong Liu ◽  
Huiping Chen ◽  
Zhuangli Zhang ◽  
...  

Background:With the approval of gefitinib, erlotinib, afatinib, and osimertinib for clinical use, targeting Epidermal Growth Factor Receptor (EGFR) has been intensively pursued. Similar to most therapies, challenges related to the treatment resistance against these drugs have emerged over time, so new EGFR Tyrosine Kinase Inhibitors (TKIs) need to be developed. This study aimed to investigate the potential use of a series of thiophene-bearing quinazoline derivatives as EGFR inhibitors. We designed and synthesized nine quinazolin derivatives, among which five compounds (5e, 5f, 5g, 5h, and 5i) were reported for the first time. </P><P> Methods: Two cancer cell lines, A431 (overexpressing EGFR) and A549 (EGFR wild-type and Kras mutation), were treated by these compounds and subjected to MTT assay. The A431 cells were selected for further treatment (5e) and Western blot analysis.Results:Although the compounds exerted no obvious effects on the proliferation of A549 cells, seven out of the nine compounds significantly inhibited the growth of A431 cells. In particular, the IC50 values of 5e and erlotinib were nearly equal. Western blot results showed that 5e significantly inhibited EGFR autophosphorylation in A431 cells. Structure-activity relationships indicated that quinazolines bearing 6,7-side chains were more potent than those unsubstituted at the 6,7-positions. Moreover, electron-withdrawing hydrophobic groups on the 5-position of the thiophene were preferred, such as chlorine or bromine atom.Conclusion:Nine 4-aminoquinazolin derivatives were designed, synthesized, and evaluated against A431 and A549 cell lines. Seven compounds significantly inhibited the growth of A431 cells. In particular, 5e possessed similar antitumor potency to that of erlotinib.

2020 ◽  
Author(s):  
Lijuan Zhang ◽  
Meng Tian ◽  
Jiamao Lin ◽  
Jianbo Zhang ◽  
Haiyong Wang ◽  
...  

Abstract Background: Estrogen receptor β (ERβ) can regulate cellular signaling through non-genomic mechanisms, potentially promoting resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, the mechanisms underlying the ERβ-mediated resistance to EGFR TKIs remain poorly understood. Methods: qRT-PCR was performed to investigate ERβ1 and ERβ5 expression levels in cell lines. The localization of ERβ and ERβ1 within cells was assessed using immunocytochemistry and immunofluorescence. The effect of estradiol and/or gefitinib on EGFR signaling pathways was determined by western blot. Cell viability and colony formation assays were used to assess gefitinib response for different cell lines. The apoptosis was verified by tunel and western blot. Immunohistochemistry was used to assess the expression of ERβ1 in lung adenocarcinoma tissues. Patient survival was estimated using the Kaplan-Meier method, and comparisons between groups were conducted using log-rank tests. Results: PC9 cell lines stably overexpressing ERβ1 or ERβ1/ERβ5 were established successfully. Immunofluorescence revealed that ERβ5 overexpression partly retained ERβ1 in the cytoplasm. Immunoblotting analyses revealed that EGFR pathway activation levels were higher in PC9/ERβ1/5 cells than those in PC9/ERβ1 or control PC9 cells. In the presence of estradiol, PI3K/AKT/mTOR pathway activation levels were higher in ERβ1/5-expressing cells than those in ERβ1-expressing cells. Additionally, PC9/ERβ1/5 cells were less prone to the cytotoxic and pro-apoptotic effects of gefitinib compared with PC9/ERβ1 or control PC9 cells. Conclusion: Cytoplasmic ERβ1 was associated with poor progression-free survival in lung cancer patients treated with EGFR TKIs. These results suggest that anti-estrogen therapy might reverse EGFR TKI treatment resistance to some extent in selected patients.


2020 ◽  
Vol 42 (4) ◽  
pp. 564-564
Author(s):  
Ju liu Ju liu ◽  
Jun Li Jun Li ◽  
Jian tao Shi Jian tao Shi ◽  
Jie Li Jie Li ◽  
Xue chen Hao Xue chen Hao ◽  
...  

A series of novel 4-phenylaminobenzofuro[2,3-d]pyrimidine derivatives had been prepared and assessed for their in vitro antiproliferative activities against three lung cancer cell lines (A549, H460 and H1975). The bioassay results showed most of the designed compounds exhibited potential antiproliferation activities. Among them, compound 8f exhibited remarkable inhibitory activity against A549 and H460 cell lines with IC50 value of 2.54 μM and 2.68 μM, respectively, which was comparable to that of the positive control sorafenib (IC50 = 2.69 μM for A549 and 3.71 μM for H460). AO/EB staining suggests that compound 8f could induce apoptosis in A549 cells. Furthermore, cell cycle analyses show that compound 8f increased G0/G1 A549 cells arrest in a concentration-dependent manner. The preliminary structure-activity relationships (SARs) studies indicated that mono-electron-withdrawing groups (mono-EWGs) on the phenyl ring are positive on the antitumor activity.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2108 ◽  
Author(s):  
Chuanming Zhang ◽  
Xiaoyu Tan ◽  
Jian Feng ◽  
Ning Ding ◽  
Yongpeng Li ◽  
...  

To discover new antiproliferative agents with high efficacy and selectivity, a new series of 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea derivatives (7a–7t) were designed, synthesized and evaluated for their antiproliferative activity against A549, HCT-116 and PC-3 cancer cell lines in vitro. Most of the target compounds demonstrated significant antiproliferative effects on all the selective cancer cell lines. Among them, the target compound, 1-[4-chloro-3-(trifluoromethyl)phenyl]-3-{4-{{[3-methyl-4-(2,2,2-trifluoroethoxy)pyridin-2-yl]methyl}thio}phenyl}urea (7i) was identified to be the most active one against three cell lines, which was more potent than the positive control with an IC50 value of 1.53 ± 0.46, 1.11 ± 0.34 and 1.98 ± 1.27 μM, respectively. Further cellular mechanism studies confirmed that compound 7i could induce the apoptosis of A549 cells in a concentration-dependent manner and elucidated compound 7i arrests cell cycle at G1 phase by flow cytometry analysis. Herein, the studies suggested that the 1-aryl-3-{4-[(pyridin-2-ylmethyl)thio]phenyl}urea skeleton might be regarded as new chemotypes for designing effective antiproliferative agents.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Shaad E. Abdullah ◽  
Missak Haigentz ◽  
Bilal Piperdi

Epidermal growth factor receptor (EGFR) inhibition has now been well established as an effective treatment for various cancers. The EGFR belongs to the ErbB family of tyrosine kinase receptors which regulate tumor cell differentiation, survival and proliferation. Activation of EGFR drives tumorigenesis in lung, head and neck, colorectal and pancreatic cancers. Irrespective of the type of cancer being treated and the mechanism by which tumor EGFR drives tumorigenesis, the major side effect of EGFR inhibition is a papulopustular (also described as maculopapular or acneiform) rash which occurs in about two thirds of treated patients. Interestingly, this rash has been commonly correlated with better clinical outcomes (objective tumor response and patient survival). The pathophysiology of dermatological toxicity from EGFR inhibitors is an important area of clinical research, and the proper management of the rash is essential to increase the therapeutic index from this class of drugs. In this paper, we review the dermatologic toxicities associated with EGFR inhibitors with an emphasis on its pathophysiology and clinical management.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e15577-e15577
Author(s):  
Ran Lin Wang ◽  
Tao Li ◽  
Jianming Huang ◽  
Jiahua Lv

e15577 Background: To explore the effect of radiation combined with Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKI) on the expression of PD-L1 in ESCC cell lines, and to provide theoretical support for radiotherapy combined with EGFR-TKI for esophageal cancer. Methods: Reverse transcription-polymerase chain reaction (RT-PCR) method was used to assess EGFR and PD-L1 mRNA expression on ESCC cell lines when different doses of X-ray irradiation were conducted on ESCC cell lines TE-1 and ECA-109 combining with EGFR-TKI or not. Results: In ESCC cell lines TE-1 and ECA-109, the expression of EGFR and PD-L1 mRNA was increased significantly by the activation of EGFR signaling pathway and decreased after the use of gefitinib (P > 0.01). Both EGFR (P < 0.01) and PD-L1(P < 0.01) mRNA expression of ESCC cell lines TE-1 and ECA-109 were increased by radiotherapy alone. EGFR-TKI could block the increase of both EGFR mRNA (P < 0.01) and PD-L1 mRNA (P < 0.01) which was induced by radiation. Conclusions: EGFR signaling pathway is involved in the regulation of PD-L1 expression in ESCC cell lines. Radiation could up-regulate the expression of EGFR and PD-L1 mRNA in ESCC cells which could be blocked by the use of EGFR-TKI.


ChemMedChem ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. 1495-1504 ◽  
Author(s):  
Mostafa M. Hamed ◽  
Dalal A. Abou El Ella ◽  
Adam B. Keeton ◽  
Gary A. Piazza ◽  
Ashraf H. Abadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document