Exploration of Luteolin as Potential Anti-COVID19 agent: Molecular Docking, Molecular Dynamic Simulation, ADMET and DFT analysis

Author(s):  
Waseem Ahmad Ansari ◽  
Tanveer Ahamad ◽  
Mohsin Ali Khan ◽  
Zaw Ali Khan ◽  
Mohammad Faheem Khan

Background: Recently, coronavirus disease-2019 (COVID-19) has become a pandemic disease of the respiratory tract having mild to severe symptoms of pneumonia. No clinical antiviral agent is available so far, however, several repurposing drugs and vaccine are being given to individuals or in clinical trials against SARS-CoV-2 Objective: The aim of this study is to uncover the potential effects of Luteolin (Lut) as an inhibitor of SARS-CoV2 encoded proteins via utilizing computational tools Method: Molecular modelling to unfold the anti-SARS-CoV2 potential of Lut along with reference drugs namely remdesivir and nafamostat was performed by the use of molecular docking, molecular dynamic (MD) simulation, absorption, distribution, metabolism, excretion, toxicity (ADMET) and density functional theory (DFT) methods against the five different SARS-CoV-2 encoded key proteins and one human receptor protein. The chemical reactivity of Luteolin is done through prediction of HOMO-LUMO gap energy and other chemical descriptors analysis Results: In the present study, Lut binds effectively in the binding pockets of spike glycoprotein (6VSB), ADP phosphatase of NSP3 (6W02), and RNA dependent RNA polymerase (7AAP) protein receptors with significant values of docking scores -7.00, -7.25, and -6.46 respectively as compared to reference drugs remdesivir and nafamostat. Conclusion:: Thus, Lut can act as therapeutic agent and is orally safe for human consumption as predicted by molecular modelling against SARS-CoV-2 in the treatment of COVID-19

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3631
Author(s):  
Ahmed M. Deghady ◽  
Rageh K. Hussein ◽  
Abdulrahman G. Alhamzani ◽  
Abeer Mera

The present investigation informs a descriptive study of 1-(4-Hydroxyphenyl) -3-phenylprop-2-en-1-one compound, by using density functional theory at B3LYP method with 6-311G** basis set. The oxygen atoms and π-system revealed a high chemical reactivity for the title compound as electron donor spots and active sites for an electrophilic attack. Quantum chemical parameters such as hardness (η), softness (S), electronegativity (χ), and electrophilicity (ω) were yielded as descriptors for the molecule’s chemical behavior. The optimized molecular structure was obtained, and the experimental data were matched with geometrical analysis values describing the molecule’s stable structure. The computed FT-IR and Raman vibrational frequencies were in good agreement with those observed experimentally. In a molecular docking study, the inhibitory potential of the studied molecule was evaluated against the penicillin-binding proteins of Staphylococcus aureus bacteria. The carbonyl group in the molecule was shown to play a significant role in antibacterial activity, four bonds were formed by the carbonyl group with the key protein of the bacteria (three favorable hydrogen bonds plus one van der Waals bond) out of six interactions. The strong antibacterial activity was also indicated by the calculated high binding energy (−7.40 kcal/mol).


2020 ◽  
Vol 21 (11) ◽  
pp. 3922 ◽  
Author(s):  
Mohamed Hagar ◽  
Hoda A. Ahmed ◽  
Ghadah Aljohani ◽  
Omaima A. Alhaddad

The novel coronavirus, COVID-19, caused by SARS-CoV-2, is a global health pandemic that started in December 2019. The effective drug target among coronaviruses is the main protease Mpro, because of its essential role in processing the polyproteins that are translated from the viral RNA. In this study, the bioactivity of some selected heterocyclic drugs named Favipiravir (1), Amodiaquine (2), 2′-Fluoro-2′-deoxycytidine (3), and Ribavirin (4) was evaluated as inhibitors and nucleotide analogues for COVID-19 using computational modeling strategies. The density functional theory (DFT) calculations were performed to estimate the thermal parameters, dipole moment, polarizability, and molecular electrostatic potential of the present drugs; additionally, Mulliken atomic charges of the drugs as well as the chemical reactivity descriptors were investigated. The nominated drugs were docked on SARS-CoV-2 main protease (PDB: 6LU7) to evaluate the binding affinity of these drugs. Besides, the computations data of DFT the docking simulation studies was predicted that the Amodiaquine (2) has the least binding energy (−7.77 Kcal/mol) and might serve as a good inhibitor to SARS-CoV-2 comparable with the approved medicines, hydroxychloroquine, and remdesivir which have binding affinity −6.06 and −4.96 Kcal/mol, respectively. The high binding affinity of 2 was attributed to the presence of three hydrogen bonds along with different hydrophobic interactions between the drug and the critical amino acids residues of the receptor. Finally, the estimated molecular electrostatic potential results by DFT were used to illustrate the molecular docking findings. The DFT calculations showed that drug 2 has the highest of lying HOMO, electrophilicity index, basicity, and dipole moment. All these parameters could share with different extent to significantly affect the binding affinity of these drugs with the active protein sites.


Author(s):  
Muhammad Torequl Islam ◽  
Pranta Ray ◽  
Abul Bashar Ripon Khalipha ◽  
SM Hafiz Hassan ◽  
Md. Roich Khan ◽  
...  

This study aimed to determine the activity of PYT and its derivatives against COX-2, including 5IKR protein induced inflammation by using the computational tools. PYT and its derivatives have been designed by utilizing density functional theory (DFT) and the performance of the drugs was also evaluated by molecular docking study. Results suggest that the NH2 derivative of PYT (D-NH2) showed binding energy -6.4 (Kcal/mol) with protein 5IKR of COX-2 compared to the main drug (D) that showed binding energy -5.1 (Kcal/mol) with the same protein. HOMO and LUMO energy values were also calculated to determine the chemical reactivity of all the modified drugs. Non-covalent interactions of PYT and its derivatives were essential in improving the performance. In conclusion, D-NH2 showed better preference in inhibiting to the protein 5IKR of COX-2 compared to other modified drugs and it can be claimed that D-NH2 will be the best conformer for COX-2 induced inflammation.


2021 ◽  
Vol 11 (6) ◽  
pp. 13806-13828

The development of novel and safe compounds is a challenging task in the drug discovery trajectory. Accordingly, the individuation of promising core molecules with biological activities could pave the way to develop effective drugs to treat a given disease. The use of a computational approach can reduce the time for identifying promising core molecules characterizing their potential pharmacological profile and providing hints for the synthesis of novel derivatives with increased predicted pharmacological activity. Following this strategy, starting from a core molecule thiazolidine-2,4-dione, the derivative of 5-(3-nitro-arylidene)-thiazolidine-2,4-dione was synthesized to investigate the biological and pharmacological potential. An extensive computational investigation was performed employing ab initio calculations by using Density Functional Theory (DFT), and subsequent in silico studies were accomplished by molecular docking calculation. The structures 5-(3-nitro-arylidene)-thiazolidine-2,4-dione were fully optimized using multiparametric DFT methods were calculated at the B3LYP/6-31+G (d, p) level basis set. Besides gaining insights into the potential pharmacological profile of the selected derivative, molecular docking against some selected drug targets, ADME, and PASS prediction were performed. According to charges and molecular electrostatic potential (MESP) calculation, the N-H region could offer promising active site interactions for protein binding. Furthermore, Homo-Lumo and global reactivity values indicate a good profile for the selected compound, and UV-Vis provides further insights about its properties, potentially helpful for further experimental analysis. Notably, the in silico investigation indicated that EGFR and ORF2 enzymes could represent the selected drug-like compound's possible targets. Conclusively, the proposed computational approach demonstrated that it is possible to evaluate a proposed compound's bioactivity profile. We characterized 5-(3-nitro-arylidene)-thiazolidine-2,4-dione derivative, suggesting it as a good starting point for developing interesting hit compounds with a relevant pharmacological profile.


2021 ◽  
Vol 12 (4) ◽  
pp. 412-418
Author(s):  
Monir Uzzaman ◽  
Amrin Ahsan ◽  
Mohammad Nasir Uddin

Benzodiazepines are widely used to treat anxiety, insomnia, agitation, seizures, and muscle spasms. It works through the GABAA receptors to promote sleep by inhibiting brainstem monoaminergic arousal pathways. It is safe and effective for short-term use, and arises some crucial side effects based on dose and physical condition. In this investigation, physicochemical properties, molecular docking, and ADMET properties have been studied. Density functional theory with B3LYP/6-311G+(d,p) level of theory was set for geometry optimization and elucidate their thermodynamic, orbital, dipole moment, and electrostatic potential properties. Molecular docking and interaction calculations have performed against human GABAA receptor protein (PDB ID: 4COF) to search the binding affinity and effective interactions of drugs with the receptor protein. ADMET prediction has performed to investigate their absorption, metabolism, and toxic properties. Thermochemical data suggest the thermal stability; the docking result predicts effecting bindings and ADMET calculation disclose non-carcinogenic and relatively harmless phenomena for oral administration of all drugs.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5828
Author(s):  
Amalia Stefaniu ◽  
Lucia Pirvu ◽  
Bujor Albu ◽  
Lucia Pintilie

Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans’ theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski’s and Weber’s rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection.


2021 ◽  
Vol 20 ◽  
pp. 117693512110492
Author(s):  
Toheeb A Balogun ◽  
Nureni Ipinloju ◽  
Olayemi T Abdullateef ◽  
Segun I Moses ◽  
Damilola A Omoboyowa ◽  
...  

Introduction: Epidermal growth factor receptor (EGFR) is a transmembrane protein that belongs to the ErbB/HER-family of tyrosine kinase receptors. Somatic mutations and overexpression of EGFR have been reported to play a vital role in cancer cell development and progression, including cell proliferation, differentiation, angiogenesis, apoptosis, and metastatic spread. Hence, EGFR is an important therapeutic target for the treatment of various types of epithelial cancers. Somatic mutations have led to resistance to clinically approved synthetic EGFR inhibitors. Furthermore, synthetic EGFR inhibitors have been associated with several side effects. Thus, there is a need to develop novel EGFR inhibitors with an acceptable biosafety profile and high efficacy. Methods: Herein, we employed structural bioinformatics and theoretical chemistry techniques via molecular docking, molecular mechanics generalized Born surface area (MM-GBSA) calculation, density functional theory analysis (DFT), and pharmacokinetic study to identify novel EGFR inhibitors. Results: The stringent molecular docking and MM-GBSA calculations identified MET 793, LYS 745, PHE 723, ASP 855, ARG 411, and THR 854 as principal amino acid residues for EGFR-ligands interactions. Furthermore, Colocasia affinis Schott compounds exhibited higher binding energy and more stable interactions than the reference compound (gefitinib). DFT analysis also ascertains better bioactivity and chemical reactivity of C. affinis Schott with favorable intramolecular charge transfer between electron-donor and electron acceptor groups. The pharmacokinetic profile of C. affinis Schott bioactive compounds satisfies Lipinski’s rule of five assessment. Conclusion: Collectively, C. affinis Schott compounds demonstrated higher inhibitory potentials against EGFR and better pharmacological properties when compared with gefitinib. C. affinis Schott compounds are therefore suggested as promising therapeutic EGFR inhibitors for cancer treatment.


2020 ◽  
Vol 21 (4) ◽  
pp. 1253 ◽  
Author(s):  
Mohamed E. Elshakre ◽  
Mahmoud A. Noamaan ◽  
Hussein Moustafa ◽  
Haider Butt

In this work, three computational methods (Hatree-Fock (HF), Møller–Plesset 2 (MP2), and Density Functional Theory (DFT)) using a variety of basis sets are used to determine the atomic and molecular properties of dihydrothiouracil-based indenopyridopyrimidine (TUDHIPP) derivatives. Reactivity descriptors of this system, including chemical potential (µ), chemical hardness (η), electrophilicity (ω), condensed Fukui function and dual descriptors are calculated at B3LYP/6-311++ G (d,p) to identify reactivity changes of these molecules in both gas and aqueous phases. We determined the molecular electrostatic surface potential (MESP) to determine the most active site in these molecules. Molecular docking study of TUDHIPP with topoisomerase II α and β is performed, predicting binding sites and binding energies with amino acids of both proteins. Docking studies of TUDHIPP versus etoposide suggest their potential as antitumor candidates. We have applied Lipinski, Veber’s rules and analysis of the Golden triangle and structure activity/property relationship for a series of TUDHIPP derivatives indicate that the proposed compounds exhibit good oral bioavailability. The comparison of the drug likeness descriptors of TUDHIPP with those of etoposide, which is known to be an antitumor drug, indicates that TUDHIPP can be considered as an antitumor drug. The overall study indicates that TUDHIPP has comparable and even better descriptors than etoposide proposing that it can be as effective antitumor drug, especially 2H, 6H and 7H compounds.


2021 ◽  
Vol 11 (9) ◽  
pp. 4067
Author(s):  
Linda-Lucila Landeros-Martínez ◽  
Néstor Gutiérrez-Méndez ◽  
Juan Pedro Palomares-Báez ◽  
Nora-Aydeé Sánchez-Bojorge ◽  
Juan Pablo Flores-De los Ríos ◽  
...  

Type 2 diabetes mellitus has been classified as the epidemic of the XXI century, making it a global health challenge. Currently, the commonly used treatment for this disease is acarbose, however, the high cost of this medicine has motivated the search for new alternatives. In this work, the maysin, a characteristic flavonoid from maize inflorescences, and its aglycon version, luteolin, are proposed as acarbose substitutes. For this, a theoretical comparative analysis was conducted on the molecular interactions of acarbose, maysin, and luteolin with human maltase-glucoamylase (NtMGAM), as well as their oxidative process. The binding energies in the active site of NtMGAM with acarbose, maysin, and luteolin molecules were predicted using a molecular docking approach applying the Lamarckian genetic algorithm method. Theoretical chemical reactivity parameters such as chemical hardness (η) and chemical potential (µ) of the acarbose, maysin, and luteolin molecules, as well as of the amino acids involved in the active site, were calculated using the electronic structure method called Density Functional Theory (DFT), employing the M06 meta-GGA functional in combination with the 6-31G(d) basis set. Furthermore, a possible oxidative process has been proposed from quantum-chemical calculations of the electronic charge transfer values (ΔN), between the amino acids of the active site and the acarbose, maysin, and luteolin. Molecular docking predictions were complemented with molecular dynamics simulations. Hence, it was demonstrated that the solvation of the protein affects the affinity order between NtMGAM and ligands.


Sign in / Sign up

Export Citation Format

Share Document