Antioxidant, antimicrobial, and molecular docking studies of novel chalcones and Schiff bases bearing 1, 4-naphthoquinone moiety

Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Hajer Hrichi ◽  
Rania B. Bakr

Background: The 1,4-naphthoquinone ring has attracted prominent interest in the field of medicinal chemistry due to its potent pharmacological activity as antioxidant, antibacterial, antifungal, and anticancer. Objective: Herein, a series of new Schiff bases (4-6) and chalcones (8a-c & 9a-d) bearing 1,4-naphthoquinone moiety were synthesized in good yields and were subjected to in-vitro antimicrobial, antioxidant, and molecular docking testing. Methods: A facile protocol has been described in this study for the synthesis of new derivatives (4-7, 8a-c, and 9a-d) bearing 1,4-naphthoquinone moiety. The chemical structures of all the synthesized compounds were identified by 1H-NMR, 13C-NMR, MS, and elemental analyses. Moreover, these derivatives were assessed for their in-vitro antimicrobial activity against gram-positive, gram-negative bacteria, and fungal strains. Further studies were conducted to test their antioxidant activity using DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay. Molecular docking studies were realized to identify the most likely interactions of the novel compounds within the protein receptor. Results: The antimicrobial results showed that most of the compounds displayed good efficacy against both bacterial and fungal strains. The antioxidant study revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active sites. Conclusion: Based on the obtained results, it was found that compounds 8b, 9b, and 9c displayed the highest activity against both bacterial and fungal strains. The obtained findings from the DPPH radical scavenging method revealed that compounds 9d and 9a exhibited the strongest scavenging potential. The molecular docking studies proved that the most active antimicrobial compounds 8b, 9b and 9c displayed the highest energy binding scores within the glucosamine-6-phosphate synthase (GlcN-6-P) active site.

2020 ◽  
Vol 32 (5) ◽  
pp. 1151-1157 ◽  
Author(s):  
P. Raghurama Shetty ◽  
G. Shivaraja ◽  
G. Krishnaswamy ◽  
K. Pruthviraj ◽  
Vivek Chandra Mohan ◽  
...  

In this work, some 2-phenyl quinoline-4-carboxamide derivatives (5a-j) were synthesized via base catalyzed Pfitzinger reaction of isatin and acetophenone followed by C-N coupling reaction using POCl3 and assessed them for their in vitro antimicrobial and anticancer activity. The structure of newly synthesized compound were established by FT-IR, 1H & 13C NMR and Mass spectrometric analysis. The synthesized carboxamides were subjected to preliminary in vitro antibacterial activity as well as for antifungal activity. Results of antibacterial activity were compared with standard antibacterial (ciprofloxocin) and antifungal (fluconozole). Among the tested compounds, 5d, 5f and 5h exhibited promising activity with zone of inhibition ranging from 10 to 25 mm. Further, the anticancer activity determined using MTT assay against two cancer cell lines. Compounds 5b, 5d, 5f and 5h showed good anticancer activity among all the other derivatives. In order to correlate the in vitro results, in silico ADME and Molecular docking studies were carried out for (5a-j). ADME properties results showed that all the compounds obey rule of Five rule except 5a, 5e and 5g compound. Molecular docking studies of the synthesized compounds showed good binding affinity through hydrogen bond interactions with key residues on active sites as well as neighboring residues within the active site of chosen target proteins viz. antibacterial, antifungal and anticancer. Comparison of both results of in silico as well as in vitro investigation suggests that the synthesized compounds may act as potential antimicrobial as well as anticancer agents.


2019 ◽  
Vol 16 (7) ◽  
pp. 560-568
Author(s):  
Vijayan R. Akhila ◽  
Maheswari R. Priya ◽  
Daisy R. Sherin ◽  
Girija K. Krishnapriya ◽  
Sreerekha V. Keerthi ◽  
...  

The synthesis of 4-amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles 4a-h, as example of 2,4-diaminothiazole-benzofuran hybrids and an evaluation of their antidiabetic activity, by in vitro and computational methods, are reported. The synthesis of these diaminothiazoles was achieved mechano chemically by a rapid solvent-less method. Their antidiabetic activity was assessed by α-glucosidase and α-amylase inhibition assays. The, IC50 value for α-glucosidase inhibition by 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) was found to be 20.04 µM and the IC50 value for α-amylase inhibition, 195.03 µM, whereas the corresponding values for reference acarbose were 53.38 µM and 502.03 µM, respectively. Molecular docking studies at the active sites of α- glucosidase and α-amylase showed that among the diaminothiazoles 4a-h now studied, 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) has the highest D-scores of -8.63 and -8.08 for α-glucosidase and for α-amylase, with binding energies -47.76 and -19.73 kcal/mol, respectively.


2021 ◽  
Author(s):  
Nadia Elkanzi ◽  
Hajer Hrichi ◽  
Rania B. Bakr

Abstract The synthesis of novel 1,4-naphthoquinone derivatives has attracted prominent interest in the field of medicinal chemistry since these compounds exhibit potent pharmacological activity as antibacterial, antioxidant, antifungal, and anticancer. Herein, a series of novel 1,4-naphthoquinone derivatives 4-7, 8a-c, and 9a-d containing heterocyclic moieties were synthesized in good yields and characterized by spectral and elemental analyses. All the new synthesized compounds were subjected to in-vitro antimicrobial testing against gram-positive, gram-negative, and fungal strains by calculating the average of the zone of inhibition. The antimicrobial results showed that compounds 8b, 9b, and 9c displayed the highest efficacy against both bacterial and fungal strains. Further studies have been conducted to estimate the antioxidant activity of the compounds using DPPH scavenging assay. The obtained results revealed that compounds 9d, 9a, 9b, 8c, and 6 exhibited the highest radical scavenging activity. Docking studies of the most active antimicrobial compounds within GLN- 6-P, recorded good scores with several binding interactions with the active site.


2020 ◽  
Vol 17 (7) ◽  
pp. 873-883
Author(s):  
Pulabala Ramesh ◽  
Vankadari Srinivasa Rao ◽  
Puchakayala Muralidhar Reddy ◽  
Katragadda Suresh Babu ◽  
Mutheneni Srinivasa Rao

Background:: Most of the currently available pharmaceutical drugs are either natural products or analogues of natural products. Flavonoids are plant based natural polyphenolic compounds which exhibit a wide range of biological activities. Chrysin, a natural flavone, exhibits several biological activities like antiallergic, anti-inflammatory and anticancer. Many efforts were made to enhance the biological activity of chrysin. In continuation of our work on synthetic modifications of chrysin, amino-alcohol containing heterocyclic moiety is linked to chrysin at C (7) position to enhance its biological activity. Methods:: A series of new C (7) modified analogues of chrysin (3a-k) have been designed and synthesized in two steps. Chrysin, on reacting with epichlorohydrin in the presence of K2CO3 in DMF gave epoxide (2) which was made to react with cyclic secondary amines in the presence of LiBr to form the designed products (3a-k). All the synthesized compounds (3a-k) were well characterized by 1H NMR, 13C NMR and mass spectral data. The synthesized analogues (3a-k) were screened for their in vitro biological activities against a panel of bacterial and fungal strains. Molecular docking studies were also performed on these compounds with E. coli FabH (1HNJ) and S. cerevisiae (5EQB) enzymes, to support the observed biological activities. Results:: A series of new 2-hydroxy 3-amino chrysin derivatives (3a-k) were synthesized in two steps, starting with chrysin and their structures were characterized by spectral analysis. In vitro biological activities of these analogues against a panel of bacterial and fungal strains indicated that some of the derivatives manifested significant activities compared to standard drugs. Molecular docking and binding energy values were also correlated with experimental antimicrobial screening results. Lipinski’s “rule of five” is also obeyed by these analogues (3a-k) and exhibit drug-likeness. Conclusion:: In the present study, a series of new C (7) modified chrysin analogues (3a-k) were synthesized and tested for their in vitro antimicrobial activities. These biological studies indicated that some of the derivatives exhibited moderate to good antimicrobial activities compared to standard drugs. Molecular docking studies performed on these compounds correlated with the experimental antimicrobial activities. The results obtained in the study will be useful in establishing new drug entities to control the pathogenic epidemics.


Author(s):  
Bipin Bihari ◽  
Girendra Kumar Gautam ◽  
Akash Ved

Owing to the increasingly serious problems caused by multidrug resistance in acquired infection pathogens, it has become an urgent need to develop new classes of antibiotics for overcoming the resistance. The present study aims to increase the antimicrobial activity of quinoxaline thiosemicarbazide derivatives by introducing a hydrophobic alkyl chain, an electron-releasing group in the ring, and substitution by some acyclic, cyclic and bicyclic monoterpenes and their antimicrobial evaluation against various strains with molecular docking studies. The lead molecule (1E, 4E)-1-(7-chloro-3-isopropyl- quinoxalin-2(1H)-ylidene) thiosemicarbazide was synthesized and condensed with various monoterpenes to synthesize different derivatives. The structures of compounds were confirmed through IR., NMR & mass spectroscopy. The synthesized derivatives were evaluated in vitro for antibacterial  and  antifungal activities against various strains using the agar dilution method. Molecular docking studies of the derivatives (Va– Vg) were performed to find out essential binding sites against target protein (PDB: 3 FAP, receptor: FKBP 12) using Autodock 4.2. The compounds Va, Vd, Vf & Vg exhibited potent antibacterial and antifungal activity. Among all these compounds Vd was found to exhibit more potent activity against gram +Ve, gram –Ve bacterial and fungal strains at MIC 0.19 μg/ml, 0.39μg/ml, and 1.56 μg/ml respectively. The docking studies of all the compounds exhibit potent binding energy, but the compound Vd exhibit interactive binding energy (-9.98 kcal/mol) to the active pockets of the receptor FKBP12. The compound Vd interacting with various active sites of amino acids of receptors like PHE128, TRP190, TYR26, VAL55, ILE56, PHE99, and TRP59. In terms of structure- activity relationship study it is revealed that the activity profile against bacterial and fungal strains was altered by the formation of monoterpenoid substituted (1E, 4E)-1-(7- chloro-3-isopropylquinoxalin-2(1H)-ylidene) thiosemicar- bazide derivatives. The study reveals that bicyclic monoterpenes substituted compounds exhibit greater activity than cyclic and acyclic. The molecular docking studies also showed that all the compounds exhibit good docking energy to bind and inhibit the FKBP12 receptor.


2020 ◽  
Vol 32 (9) ◽  
pp. 2125-2129
Author(s):  
RAMARAJAN RAJALAKSHMI ◽  
RAJAVEL SANTHI ◽  
THANGARAJ ELAKKIYA

A series of new 4-thiazolidinone derivatives of 2-(4-chlorophenyl)-3-(6-(thiophen-2-yl)-4-p-tolyl-4H-1,3-oxazin-2-yl)- thiazolidin-4-one (7h-m) are synthesized because of its wide range of biological activities.1H & 13C NMR, IR studies were applied for the elucidation of all the synthesized compounds. All the synthesized compounds have been tested for antidiabetic and antioxidant activity in vitro method against standard. The analogs 7h-m was evaluated for α-amylase and α-glucosidase inhibitory potential. The structures of all the compounds have been screened for antioxidant activity using DPPH radical scavenging assay, NO scavenging method. Molecular docking studies were accomplished in addition to understand the binding affinity of those compounds with PDBID 2HR7 which showed that the synthesized derivatives bind in the lively binding site of the target protein


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4828
Author(s):  
Bushra Adalat ◽  
Fazal Rahim ◽  
Muhammad Taha ◽  
Foziah J. Alshamrani ◽  
El Hassane Anouar ◽  
...  

We synthesized 10 analogs of benzimidazole-based thiosemicarbazide 1 (a–j) and 13 benzimidazole-based Schiff bases 2 (a–m), and characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibition activities. All the synthesized analogs showed varying degrees of acetylcholinesterase and butyrylcholinesterase inhibitory potentials in comparison to the standard drug (IC50 = 0.016 and 4.5 µM. Amongst these analogs 1 (a–j), compounds 1b, 1c, and 1g having IC50 values 1.30, 0.60, and 2.40 µM, respectively, showed good acetylcholinesterase inhibition when compared with the standard. These compounds also showed moderate butyrylcholinesterase inhibition having IC50 values of 2.40, 1.50, and 2.40 µM, respectively. The rest of the compounds of this series also showed moderate to weak inhibition. While amongst the second series of analogs 2 (a–m), compounds 2c, 2e, and 2h having IC50 values of 1.50, 0.60, and 0.90 µM, respectively, showed moderate acetylcholinesterase inhibition when compared to donepezil. Structure Aactivity Relation of both synthesized series has been carried out. The binding interactions between the synthesized analogs and the enzymes were identified through molecular docking simulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamada H. Amer ◽  
Essam Hassan Eldrehmy ◽  
Salama Mostafa Abdel-Hafez ◽  
Youssef Saeed Alghamdi ◽  
Magdy Yassin Hassan ◽  
...  

AbstractA new series of nucleosides, moieties, and Schiff bases were synthesized from sulfadimidine. Infrared (IR), 1HNMR, 13C NMR, and mass spectrometry techniques and elemental analysis were employed to elucidate the synthesized compounds. The prepared analogues were purified by different chromatographic techniques (preparative TLC and column chromatography). Molecular docking studies of synthesized compounds 3a, 4b, 6a, and 6e demonstrated the binding mode involved in the active site of DNA gyrase. Finally, all synthesized compounds were tested against selected bacterial strains. The most effective synthesized compounds against S. aureus were 3a, 4d, 4b, 3b, 3c, 4c, and 6f, which exhibited inhibition zones of inhibition of 24.33 ± 1.528, 24.67 ± 0.577, 23.67 ± 0.577, 22.33 ± 1.528, 18.67 ± 1.528 and 19.33 ± 0.577, respectively. Notably, the smallest zones were observed for 4a, 6d, 6e and 6g (6.33 ± 1.528, 11.33 ± 1.528, 11.67 ± 1.528 and 14.66 ± 1.155, respectively). Finally, 6b and 6c gave negative zone values. K. pneumoniae was treated with the same compounds and the following results were obtained. The most effective compounds were 4d, 4c, 4b and 3c, which showed inhibition zones of 29.67 ± 1.528, 24.67 ± 0.577, 23.67 ± 1.155 and 19.33 ± 1.528, respectively, followed by 4a and 3d (15.33 ± 1.528 for both), while moderate results (13.67 ± 1.155 and 11.33 ± 1.528) were obtained for 6f and 6g, respectively. Finally, 6a, 6b, 6c, 3a, and 3b did not show any inhibition. The most effective compounds observed for the treatment of E. coli were 4d, 4b, 4c, 3d, 6e and 6f (inhibition zones of 26.33 ± 0.577, 21.67 ± 1.528, 21.67 ± 1.528, 19.67 ± 1.528, 17.67 ± 1.155 and 16.67 ± 1.155, respectively). Compounds 3b, 3c, 6a, 6c, and 6g gave moderate results (13.67 ± 1.528, 12.67 ± 1.528, 11.33 ± 0.577, 15.33 ± 1.528 and 12.67 ± 1.528, respectively), while 6b showed no effect. The MIC values against S. aureus ranged from 50 to 3.125 mg, while those against E. coli and K. pneumoniae ranged from 50 to 1562 mg. In vitro, the antibacterial effects were promising. Further research is required to study the in vivo antibacterial effects of these compounds and determine therapeutic doses.


Sign in / Sign up

Export Citation Format

Share Document