Progress in [18F]Fluorination by Using Aryliodonium(III) Compounds and Application for PET Tracer Syntheses

Author(s):  
Kotaro Kikushima ◽  
Ravi Kumar ◽  
Toshifumi Dohi

: [ 18F]-labeled drugs and radioligands are most frequently used in positron-emission tomography (PET) radiopharmaceuticals for both clinical and preclinical research. Various methods for the introduction of [18F] into complex molecules through fluorination reactions have been reported. Herein, recent advances in [18F]-fluorination utilizing aryliodonium(III) compounds are highlighted.

2011 ◽  
Vol 301-303 ◽  
pp. 1316-1321 ◽  
Author(s):  
Arthur E. Ruggles ◽  
Bi Yao Zhang ◽  
Spero M. Peters

Positron Emission Tomography (PET) produces a three dimensional spatial distribution of positron-electron annihilations within an image volume. Various positron emitters are available for use in aqueous, organic and liquid metal flows. Preliminary experiments at the University of Tennessee at Knoxville (UTK) injected small flows of PET tracer into a bulk water flow in a four rod bundle. The trajectory and diffusion of the tracer in the bulk flow were then mapped using a PET scanner. A spatial resolution of 1.4 mm is achieved with current preclinical Micro-PET imaging equipment resulting in 200 MB 3D activity fields. A time resolved 3-D spatial activity profile was also measured. The PET imaging method is especially well suited to complex geometries where traditional optical methods such as LDV and PIV are difficult to apply. PET methods are uniquely useful for imaging in opaque fluids, opaque pressure boundaries, and multiphase studies. Several commercial and shareware Computational Fluid Dynamics (CFD) codes are currently used for science and engineering analysis and design. These codes produce detailed three dimensional flow predictions. The models produced by these codes are often difficult to validate. The development of this experimental technique offers a modality for the comparison of CFD outcomes with experimental data. Developed data sets from PET can be used in verification and validation exercises of simulation outcomes.


2006 ◽  
Vol 104 (2) ◽  
pp. 238-253 ◽  
Author(s):  
Benoît Pirotte ◽  
Serge Goldman ◽  
Olivier Dewitte ◽  
Nicolas Massager ◽  
David Wikler ◽  
...  

Object The aim of this study was to evaluate the integration of positron emission tomography (PET) scanning data into the image-guided resection of brain tumors. Methods Positron emission tomography scans obtained using fluorine-18 fluorodeoxyglucose (FDG) and l-[methyl-11C]methionine (MET) were combined with magnetic resonance (MR) images in the navigational planning of 103 resections of brain tumors (63 low-grade gliomas [LGGs] and 40 high-grade gliomas [HGGs]). These procedures were performed in 91 patients (57 males and 34 females) in whom tumor boundaries could not be accurately identified on MR images for navigation-based resection. The level and distribution of PET tracer uptake in the tumor were analyzed to define the lesion contours, which in turn yielded a PET volume. The PET scanning–demonstrated lesion volume was subsequently projected onto MR images and compared with MR imaging data (MR volume) to define a final target volume for navigation-based resection—the tumor contours were displayed in the microscope’s eyepiece. Maximal tumor resection was accomplished in each case, with the intention of removing the entire area of abnormal metabolic activity visualized during surgical planning. Early postoperative MR imaging and PET scanning studies were performed to assess the quality of tumor resection. Both pre- and postoperative analyses of MR and PET images revealed whether integrating PET data into the navigational planning contributed to improved tumor volume definition and tumor resection. Metabolic information on tumor heterogeneity or extent was useful in planning the surgery. In 83 (80%) of 103 procedures, PET studies contributed to defining a final target volume different from that obtained with MR imaging alone. Furthermore, FDG-PET scanning, which was performed in a majority of HGG cases, showed that PET volume was less extended than the MR volume in 16 of 21 cases and contributed to targeting the resection to the hypermetabolic (anaplastic) area in 11 (69%) of 16 cases. Performed in 59 LGG cases and 23 HGG cases, MET-PET demonstrated that the PET volume did not match the MR volume and improved the tumor volume definition in 52 (88%) of 59 and 18 (78%) of 23, respectively. Total resection of the area of increased PET tracer uptake was achieved in 54 (52%) of 103 procedures. Conclusions Imaging guidance with PET scanning provided independent and complementary information that helped to assess tumor extent and plan tumor resection better than with MR imaging guidance alone. The PET scanning guidance could help increase the amount of tumor removed and target image-guided resection to tumor portions that represent the highest evolving potential.


Author(s):  
Ruiqing Ni

Animal models of Alzheimer’s disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research, and have greatly enabled the mechanistic understanding of Alzheimer’s disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models are essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models as well as in patients with Alzheimer’s disease, These tools have facilitated our understanding of disease mechanisms, and provided longitudinal monitoring of treatment effect in animal models of Alzheimer’s disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer’s disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes, and discuss outstanding challenges in disease animal models and future outlook in on-chip characterization of imaging biomarkers towards clinical translation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adam A. Garrow ◽  
Jack P. M. Andrews ◽  
Zaniah N. Gonzalez ◽  
Carlos A. Corral ◽  
Christophe Portal ◽  
...  

Abstract Dosimetry models using preclinical positron emission tomography (PET) data are commonly employed to predict the clinical radiological safety of novel radiotracers. However, unbiased clinical safety profiling remains difficult during the translational exercise from preclinical research to first-in-human studies for novel PET radiotracers. In this study, we assessed PET dosimetry data of six 18F-labelled radiotracers using preclinical dosimetry models, different reconstruction methods and quantified the biases of these predictions relative to measured clinical doses to ease translation of new PET radiotracers to first-in-human studies. Whole-body PET images were taken from rats over 240 min after intravenous radiotracer bolus injection. Four existing and two novel PET radiotracers were investigated: [18F]FDG, [18F]AlF-NOTA-RGDfK, [18F]AlF-NOTA-octreotide ([18F]AlF-NOTA-OC), [18F]AlF-NOTA-NOC, [18F]ENC2015 and [18F]ENC2018. Filtered-back projection (FBP) and iterative methods were used for reconstruction of PET data. Predicted and true clinical absorbed doses for [18F]FDG and [18F]AlF-NOTA-OC were then used to quantify bias of preclinical model predictions versus clinical measurements. Our results show that most dosimetry models were biased in their predicted clinical dosimetry compared to empirical values. Therefore, normalization of rat:human organ sizes and correction for reconstruction method biases are required to achieve higher precision of dosimetry estimates.


2019 ◽  
Vol 12 (5) ◽  
pp. e218979 ◽  
Author(s):  
Kalevi Kairemo ◽  
Vivek Subbiah

Primary cardiac angiosarcoma, the most common primary cardiac sarcoma has an incidence ranging from 0.001% to 0.028% in autopsy reports with around 200 cases reported in literature. Since a diagnosis of cardiac angiosarcoma portends a poor prognosis, it is vital to ascertain the precise extent of the lesions for follow-up. Imaging with positron emission tomography (PET) tracer 2-deoxy-2-[18F]-fluoro-D-glucose in cardiac angiosarcoma is challenging as myocardium takes up glucose and delineation of tumour becomes difficult. Cell proliferation rate in normal cardiac muscular tissue is low whereas cardiac tumours display a higher proliferation rate. This aspect could be exploited by use of 3′-deoxy-3′[(18)F]-fluorothymidine positron emission tomography (18F-FLT PET/CT] in cardiac tumours where the cell proliferation could be measured. Herein, we imaged an index case of cardiac angiosarcoma using18F-FLT PET/CT and report the findings.


2007 ◽  
Vol 104 (23) ◽  
pp. 9800-9805 ◽  
Author(s):  
H. D. Burns ◽  
K. Van Laere ◽  
S. Sanabria-Bohorquez ◽  
T. G. Hamill ◽  
G. Bormans ◽  
...  

2013 ◽  
Vol 16 (1) ◽  
pp. 118-126 ◽  
Author(s):  
Martine Dhilly ◽  
Stéphane Guillouet ◽  
Delphine patin ◽  
Fabien Fillesoye ◽  
Ahmed Abbas ◽  
...  

2001 ◽  
Vol 21 (8) ◽  
pp. 1003-1012 ◽  
Author(s):  
Ian Law ◽  
Mikael Jensen ◽  
Søren Holm ◽  
Robert J. Nickles ◽  
Olaf B. Paulson

Carbon-10–labeled carbon dioxide (10CO2) with a half-life of 19.3 seconds offers almost ideal characteristics as a positron emission tomography (PET) tracer for assessment of the regional cerebral blood flow (rCBF) distribution, enabling multiple independent measurements at short intervals. To appraise the feasibility of 10CO2 for localizing and characterizing human brain function in single subjects, the authors chose a well-characterized activation paradigm. In 6 healthy volunteers, 50 to 64 independent PET scans of the rCBF distribution were acquired while viewing an annular reversing checkerboard presented at 10 reversal frequencies between 0.03 and 30 Hz. Changes in regional cerebral activity as a function of reversal frequency were modeled in every subject using a set of polynomial basis functions, which, as predicted, showed highly significant second or third order relations located in the striatal cortex. Correlation coefficients (R2) ranged from 0.46 to 0.63. The average intersubject maximal response relative to the 0.03 Hz condition was 8.0% ± 1.7% SD occurring at stimulus contrast reversal frequencies between 6 and 15 Hz with an average of 11.8 ± 3.8 (SD) Hz. From the qualitative and quantitative replication of previous results it is concluded that 10CO2 PET is a feasible technique for human brain mapping studies and a great improvement compared with the existing oxygen-15–labeled water (H215 O) PET method, particularly for single subject studies and parametric design.


2020 ◽  
Vol 20 (3) ◽  
pp. 1375-1382 ◽  
Author(s):  
Weiwei Han ◽  
Wenjiang Yang ◽  
Fuping Gao ◽  
Pengju Cai ◽  
Jianjun Wang ◽  
...  

This work reports the synthesis, radiolabeling and imaging studies of iodine-124 labeled peptide modified gold nanoclusters (AuNCs) as positron emission tomography (PET) tracer for lung cancer. The novel modified Au nanoclusters were successfully synthesized by conjugation of tumortargeting peptide luteinizing hormone releasing hormone (LHRH) to human serum albumin (HAS) as a scaffold, resulting in 73% labeling yield of 124I-LHRH-HSA AuNCs. After rapid purification, the radiochemical purity was above 98%. Dynamic PET study in normal rats showed high liver accumulation and rapid lung clearance. Both the PET and fluorescence imaging in A549 xenografted tumor model demonstrated certain amount of tumor uptake. In orthotopic lung cancer model, the tumor sites could be clearly visualized between 2 to 5 hours in PET images. The higher radioactivity concentration in the left lung which inoculated orthotopic tumor than right lung also exhibited the targeting properties. The biological properties of this iodine-124 labeled nanoclusters afford potential applications for early diagnosis of lung cancer with PET.


Solid Earth ◽  
2016 ◽  
Vol 7 (4) ◽  
pp. 1207-1215 ◽  
Author(s):  
Johannes Kulenkampff ◽  
Abdelhamid Zakhnini ◽  
Marion Gründig ◽  
Johanna Lippmann-Pipke

Abstract. Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1–100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.


Sign in / Sign up

Export Citation Format

Share Document