Recent advances in nanomaterial-based luminescent ATP sensors

2021 ◽  
Vol 17 ◽  
Author(s):  
Xiaomeng Zhou ◽  
Li Shang

: Adenosine 5'-triphosphate (ATP) plays a significant role in biological processes and the ATP level is closely associated with many diseases. In order to detect ATP in live cells, tissues and body fluids with a high sensitivity and selectivity, researchers have developed various sensing strategies. Particularly, owing to distinct physicochemical properties of nanomaterials and high sensitivity of fluorescence, a great deal of efforts have been devoted to developing nanomaterials-based approaches for fluorescent ATP sensing in recent years. In this review, we focus on the current development of nanomaterial-based fluorescent ATP sensors and discuss the sensing mechanisms in detail. The advantages and disadvantages of ATP sensing using different kinds of nanomaterials, including carbon nanomaterials, metal nanoparticles, semiconductor quantum dots, metal-organic frameworks and up-conversion nanoparticles have been thoroughly compared and discussed. Finally, current challenges and future prospects in this field are given.

2015 ◽  
Vol 39 (10) ◽  
pp. 7858-7862 ◽  
Author(s):  
Xiao-Li Hu ◽  
Chao Qin ◽  
Xin-Long Wang ◽  
Kui-Zhan Shao ◽  
Zhong-Min Su

Employing a C3 symmetric ligand, one new cluster-based MOF [Cd2.5Na(NTB)2(DMF)4]·3DMF (1) has been successfully obtained. The results reveal that compound 1 could be applied as a fluorescence sensor for TNP with high sensitivity and selectivity.


2020 ◽  
Vol 44 (31) ◽  
pp. 13344-13349
Author(s):  
Jingtian Chi ◽  
Manli Guo ◽  
Chi Zhang ◽  
Yuanhong Zhang ◽  
Shiyun Ai ◽  
...  

The GOx & AuNCs@ZIF-8 composite was simply obtained as a colorimetric glucose sensor with high sensitivity and selectivity and long-term storage stability.


2021 ◽  
Vol 9 (7) ◽  
pp. 1811-1820
Author(s):  
Shuang Yan ◽  
Bin Luo ◽  
Jia He ◽  
Fang Lan ◽  
Yao Wu

Novel bimetallic metal–organic framework nanocomposites were fabricated by a facile yet efficient method. The as-prepared nanomaterial exhibited high sensitivity and high selectivity toward phosphopeptides and good reusability of five cycles for enriching phosphopeptides.


2021 ◽  
Author(s):  
Luis David Rosales-Vazquez ◽  
Alejandro Dorazco-González ◽  
Victor Sanchez-Mendieta

Optical sensors with high sensitivity and selectivity, as important analytical tools for chemical and environmental research, can be accomplished by straightforward synthesis of luminescent one-, two- and three-dimensional Zn(II) and...


RSC Advances ◽  
2021 ◽  
Vol 11 (39) ◽  
pp. 23975-23984
Author(s):  
Xue Yang ◽  
Yixia Ren ◽  
Hongmei Chai ◽  
Xiufang Hou ◽  
Zhixiang Wang ◽  
...  

Four fluorescent 2D Zn-MOFs based on a flexible triangular ligand and linear N-donor ligands are hydrothermally prepared and used to detect nitrobenzene in aqueous solution with high sensitivity, demonstrating their potential as fluorescent sensors.


RSC Advances ◽  
2016 ◽  
Vol 6 (105) ◽  
pp. 103116-103123 ◽  
Author(s):  
Duoming Wu ◽  
Zhaodong Xu ◽  
Ting Zhang ◽  
Yubo Shao ◽  
Pinxian Xi ◽  
...  

A hybrid heterostructure comprising well-dispersed Cu2O/CuO particles and reduced graphene oxide (rGO) is synthesized by calcinating a mixture of MOFs-118 and GO in nitrogen atmosphere to improve the sensitivity and selectivity of H2O2 sensors.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Yang Qiao ◽  
Zeqi Li ◽  
Mei-Hui Yu ◽  
Ze Chang ◽  
Xian-He Bu

High sensitivity and selectivity for detection of metal ions are very important to protect human health. Fluorescent metal-organic framework (MOF) as a new sensing material has attracted more and more...


2019 ◽  
Vol 7 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Bingqing Wang ◽  
Meiting Zhao ◽  
Liuxiao Li ◽  
Ying Huang ◽  
Xiao Zhang ◽  
...  

Abstract Structure engineering of metal-organic frameworks (MOFs) at the nanometer scale is attracting increasing interest due to their unique properties and new functions that normally cannot be achieved in bulk MOF crystals. Here, we report the preparation of ultra-thin MOF nanoribbons (NRBs) by using metal-hydroxide nanostructures as the precursors. Importantly, this general method can be used to synthesize various kinds of ultra-thin MOF NRBs, such as MBDC (M = Co, Ni; BDC = 1,4-benzenedicarboxylate), NiCoBDC, CoTCPP (TCPP = tetrakis(4-carboxyphenyl)porphyrin) and MIL-53(Al) NRBs. As a proof-of-concept application, the as-prepared ultra-thin CoBDC NRBs have been successfully used as a fluorescent sensing platform for DNA detection, which exhibited excellent sensitivity and selectivity. The present strategy might open an avenue to prepare MOF nanomaterials with new structures and unique properties for various promising applications.


Sign in / Sign up

Export Citation Format

Share Document