Electrochemical Analysis of Antipsychotics

2019 ◽  
Vol 15 (5) ◽  
pp. 413-428 ◽  
Author(s):  
Leyla Karadurmus ◽  
Duru Kır ◽  
Sevinc Kurbanoglu ◽  
Sibel A. Ozkan

Introduction:Schizophrenia is seizures accompanied by severe psychotic symptoms, and a steady state of continuation in the form of periods of stagnation. Antipsychotics are now the basis of treatment for schizophrenia and there is no other molecule that is antipsychotic priority in treatment. Antipsychotics can be classified into two groups; dopamine receptor antagonists such as promazine, fluphenazine etc. and serotonin-dopamine antagonists including risperidone, olanzapine, ziprasidone, aripiprazole etc.Materials and Methods:Electrochemical methods have been used for the determination of antipsychotic agent just as used in the determination of many drug agents. Nearly all of the antipsychotics are electroactive and can be analyzed by electrochemical methods. Electroanalytical methods offer generally high sensitivity, are compatible with modern techniques, have low cost, low requirements, and compact design. Among the most commonly used types, there are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry.Conclusion:The aim of this review is to evaluate the main line and the advantages and uses of electroanalytical methods that employed for the determination of antipsychotic medication agents used in schizophrenia. Moreover, applications of the methods to pharmaceutical analysis of Antipsychotics upto- date is also summarized in a table.

2020 ◽  
Vol 16 (4) ◽  
pp. 337-349
Author(s):  
Leyla Karadurmus ◽  
Kaan Eşme ◽  
Nurgul K. Bakirhan ◽  
Sibel A. Ozkan

: Antibiotics are an important class among drugs because they are a significant agent to deal with infections. Cephalosporins are a very important group of antibiotics in the β-lactam class. The cephalosporins are semisynthetic antibiotics derived from products of the fungus Cephalosporium. Cephalosporins are classified as first, second, third, fourth, and advanced generation, based largely on their antibacterial spectrum and stability to β-lactamases. Electrochemical methods have been used for the determination of cephalosporin just as used in the determination of many antibiotic drugs. Electroanalytical methods present generally high sensitivity, low cost, low requirements, ease of preparation of the samples in a very short time, and a short analysis time. The most commonly used types are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry. The aim of this review is to evaluate the advantages and uses of electroanalytical methods used in the determination of cephalosporins. In addition, current applications of the methods to the pharmaceutical analysis of cephalosporins will also be summarized in a table.


2012 ◽  
Vol 5 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Jana Svítková ◽  
Martina Machková ◽  
Petra Šatkovská ◽  
Kristína Cinková ◽  
Ľubomír Švorc

Utilization of electrochemical methods in determination of trace elements in beveragesElectrochemical methods have many inherent advantages such as simplicity, low cost and amenability to miniaturization. A new, sensitive and selective electrochemical method for the caffeine determination using boron doped diamond electrode was developed. It was found by cyclic voltammetry that caffeine provided highly reproducible and well-defined irreversible oxidation peak, at very positive potential of +1.55 V vs. Ag/AgCl electrode. The effect of pH and scan rate on the voltammetric response of caffeine oxidation were studied to select the optimum experimental conditions. Linear response of peak current on the concentration in the range from 4 × 10-7to 2.5 × 10-5mol L-1, good repeatability (RSD of 2.1 %) and the detection limit of 1.5 × 10-7mol L-1without any chemical modifications and electrochemical surface pretreatment were observed by differential pulse voltammetry in 0.4 mol L-1perchloric acid. The effect of possible interfering compounds appeared to be negligible which evidently proved very good selectivity. The proposed method was successfully applied for the caffeine determination in commercially available beverage samples, with results in a close statistical agreement to these declared by manufacturer.


2019 ◽  
Vol 15 (6) ◽  
pp. 628-634
Author(s):  
Rong Liu ◽  
Jie Li ◽  
Tongsheng Zhong ◽  
Liping Long

Background: The unnatural levels of dopamine (DA) result in serious neurological disorders such as Parkinson’s disease. Electrochemical methods which have the obvious advantages of simple operation and low-cost instrumentation were widely used for determination of DA. In order to improve the measurement performance of the electrochemical sensor, molecular imprinting technique and graphene have always been employed to increase the selectivity and sensitivity. Methods: An electrochemical sensor which has specific selectivity to (DA) was proposed based on the combination of a molecular imprinting polymer (MIP) with a graphene (GR) modified gold electrode. The performance and effect of MIP film were investigated by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) in the solution of 5.0 ×10-3 mol/L K3[Fe(CN)6] and K4[Fe(CN)6] with 0.2 mol/L KCl at room temperature. Results: This fabricated sensor has well repeatability and stability, and was used to determine the dopamine of urine. Under the optimized experiment conditions, the current response of the imprinted sensor was linear to the concentration of dopamine in the range of 1.0×10-7 ~ 1.0×10-5 mol/L, the linear equation was I (µA) = 7.9824+2.7210lgc (mol/L) with the detection limit of 3.3×10-8 mol/L. Conclusion: In this work, a highly efficient sensor for determination of DA was prepared with good sensitivity by GR and great selectivity of high special recognization ability by molecular imprinting membrane. This proposed sensor was used to determine the dopamine in human urine successfully.


1991 ◽  
Vol 56 (7) ◽  
pp. 1434-1445 ◽  
Author(s):  
Jiří Barek ◽  
Ivana Švagrová ◽  
Jiří Zima

Polarographic reduction of the genotoxic N,N’-dinitrosopiperazine was studied and its mechanism was suggested. Optimum conditions were established for the determination of this substance by tast polarography over the concentration region of 1 . 10-3 to 1 . 10-6 mol l-1 and by differential pulse polarography on the conventional dropping mercury electrode or by fast scan differential pulse voltammetry and linear sweep voltammetry on a hanging mercury drop electrode over the concentration region of 1 . 10-3 to 1 . 10-7 mol l-1. Attempts at increasing further the sensitivity via adsorptive accumulation of the analyte on the surface of the hanging mercury drop failed. The methods are applicable to the testing of the chemical efficiency of destruction of the title chemical carcinogen based on its oxidation with potassium permanganate in acid solution.


2020 ◽  
Vol 20 (6) ◽  
pp. 3356-3360
Author(s):  
Hao Yong Yin ◽  
Yi Fan Zheng ◽  
Ling Wang

We report the formation of gold nanoparticles on indium tin oxide conducting glass (ITO) surface via electrodeposition method at room temperature. The prepared nano-Au electrodes has been fabricated for sensitive detection of Pb2+, and showed highly selective response toward Pb2+. The electrochemical detection of Pb2+ were determined by differential pulse stripping voltammetric (DPSV). The nano-Au electrochemical sensor could detect Pb2+ from 0.5 to 10 μM with detection limits of 0.06 μM (S/N= 3) and sensitivity of 0.27996 mA μM−1. The proposed sensor is simple, reliable, sensitive, selective, and low-cost, thus holds potential for practical application in Pb2+ detection.


2020 ◽  
Vol 10 (23) ◽  
pp. 8419
Author(s):  
Adriana Remes ◽  
Florica Manea ◽  
Sorina Motoc (m. Ilies) ◽  
Anamaria Baciu ◽  
Elisabeta I. Szerb ◽  
...  

A novel electrochemical glucose sensor was developed, based on a multiwall carbon nanotubes (MWCNTs)-copper-1,3,5-benzenetricarboxylic acid (CuBTC)-epoxy composite electrode, named MWCNT-CuBTC. The electrode nanocomposite was prepared by a two-roll mill procedure and characterized morphostructurally by scanning electron microscopy (SEM). The CuBTC formed defined crystals with a wide size distribution, which were well dispersed and embedded in the MWCNTs. Its electrical conductivity was determined by four-point probe contact (DC) conductivity measurements. The electroactive surface area, determined using cyclic voltammetry (CV), was found to be 6.9 times higher than the geometrical one. The results of the electrochemical measurements using CV, linear sweep voltammetry (LSV), differential pulse voltammetry (DPV), chronoamperometry (CA) and multiple pulse amperometry (MPA) showed that the MWCNT-CuBTC composite electrode displayed high electrocatalytic activity toward the oxidation of glucose and, as a consequence, very high sensitivity. The best sensitivity of 14,949 µAmM−1cm−1 was reached using MPA at the potential value of 0.6 V/SCE, which was much higher in comparison with other copper-based electrodes reported in the literature. The good analytical performance, low cost and simple preparation method make this novel electrode material promising for the development of an effective glucose sensor.


2019 ◽  
Vol 31 (10) ◽  
pp. 2185-2190
Author(s):  
G. Sivasankari ◽  
K. Sivasankari ◽  
T. Nalini ◽  
P. Padmapriya ◽  
M. Nadhiya

An electrochemical sensor has been developed using methylene blue (MB) unctionalized graphite for the selective determination of dopamine in the presence of ascorbic acid. The immobilization of methylene blue on graphite was done by carbodiimide coupling method. The methylene blue functionalized graphite was characterized by SEM, FTIR spectroscopy and UV-visible spectroscopy. The immobilization of methylene blue functionalized graphite (MB-G) on the electrode surface was made by drop casting a small volume of MB-G dispersed methanol solution on the electrode surface. About 5 L of 0.5 % Nafion solution was also dropcasted for the stability and selectivity. The MB-G modified electrode was characterized by cyclic voltammetry. The modified electrode promotes the electrocatalytic oxidation of dopamine at a lower potential of 160 mV. The selective determination of dopamine in the presence of 100 times higher concentration of ascorbic acid was achieved by differential pulse voltammetry. The modified electrode offered a simple, selective and sensitive determination of low levels of dopamine. Also the oxidation over potential was reduced to an extent of 360 mV comparing with the bare graphite electrode. The proposed sensor has the advantage of easy fabrication, low cost, good sensitivity, reproducibility and stability.


Author(s):  
Ahmad Khalaf Alkhawaldeh

Manganese and Molybdenum oxides are well-known electro-catalysts in fuel cells systems; they are usually used as anodic materials for the oxidation of low molecular weight alcohols. The utilization of MoO2 and MnO2 as catalysts in the pharmaceutical analysis is not common yet an analytical method for the determination of Sulfamethoxazole (SMX) antibacterial agents in Pharmaceutical Dosage form is developed. The method is based on the voltammetric determination of SMX using modified glassy carbon electrode by molybdenum oxide. The two components are oxidized at the modified electrode surface with the development of current that is linearly proportional to their concentrations in the range of 7.04*10-7- 1*10-3 M for SMX. The oxidation reaction of the two components is pH-dependent, in which the buffer used is Britton-Robinson at pH = 7.00 where maximum peak current and maximum peak separation is obtained. The regression factors obtained from the calibration curves are 0.9790 for SMX and 0.9812 for TMP. The method of analysis was validated, where the limit of detection (LOD) and the limit of quantitation (LOQ) of SMX were calculated to be 1.44*10-4 M, 4.36*10-4 M and 1.27*10-4 M, 3.84*10-4 M respectively, The percentage recovery of both components was also calculated to 81 % for SMX.


2016 ◽  
Vol 8 (45) ◽  
pp. 8028-8032
Author(s):  
Taimara Polidoro Ferreira ◽  
Rafael Arromba de Sousa ◽  
Denise Lowinsohn

The simultaneous electrochemical determination of lead (Pb) and cadmium (Cd) in low-cost jewelry was achieved using differential pulse voltammetry (DPV).


Nano LIFE ◽  
2017 ◽  
Vol 07 (03n04) ◽  
pp. 1750006 ◽  
Author(s):  
Mohammad Hasanzadeh ◽  
Soodabeh Hassanpour ◽  
Arezoo Saadati ◽  
Nasrin Shadjou ◽  
Ahad Mokhtarzadeh

In this paper, free-radical polymerization inside magnetic mesoporous silica has been investigated in order to open a route to functional polymer–silica composite nanomaterials with well-defined mesoporosity. Proline monomers integrated with chitosan (CS) were electropolymerized into amino-functionalized magnetic mesoporous silica. The fabrication of polyproline-amino-functionalized magnetic mesoporous silica–CS nanohybrid on glassy carbon electrode (GCE) was performed using one step electrodeposition regime. Field emission scanning electron microscopy (FE-SEM) was confirmed as produced nanohybrid material containing polyproline (PPR) into the pores of magnetic (Fe3O[Formula: see text] mobile crystalline material-41 grafted with 3-aminopropyl groups (MMS) which leads to increase of surface coverage of PPR. The results indicate that PPR was successfully generated inside the pores of the amino-functionalized Mobil Composition of Matter No. 41 (nPrNH2-MCM-41) and that the amine group was capable of protonating the polymer, producing polyproline, the most conductive one, without the addition of another acid source during the polymerization step. Therefore, it was evaluated some electrochemical aspects of the prepared nanohybrid using cyclic voltammetry, differential pulse voltammetry and linear sweep voltammetry. Finally, the electroactivity of polyproline -Fe3O4-nPrNH2-MCM-41-chitosan nanohybrid (PPR-MMS-CS) modified GCE toward detection and determination of some clinically relevant small biomolecules was studied.


Sign in / Sign up

Export Citation Format

Share Document