Electrochemical Sensor for Determination of Pb2+ Based on Gold Nanoparticles

2020 ◽  
Vol 20 (6) ◽  
pp. 3356-3360
Author(s):  
Hao Yong Yin ◽  
Yi Fan Zheng ◽  
Ling Wang

We report the formation of gold nanoparticles on indium tin oxide conducting glass (ITO) surface via electrodeposition method at room temperature. The prepared nano-Au electrodes has been fabricated for sensitive detection of Pb2+, and showed highly selective response toward Pb2+. The electrochemical detection of Pb2+ were determined by differential pulse stripping voltammetric (DPSV). The nano-Au electrochemical sensor could detect Pb2+ from 0.5 to 10 μM with detection limits of 0.06 μM (S/N= 3) and sensitivity of 0.27996 mA μM−1. The proposed sensor is simple, reliable, sensitive, selective, and low-cost, thus holds potential for practical application in Pb2+ detection.

2019 ◽  
Vol 15 (6) ◽  
pp. 628-634
Author(s):  
Rong Liu ◽  
Jie Li ◽  
Tongsheng Zhong ◽  
Liping Long

Background: The unnatural levels of dopamine (DA) result in serious neurological disorders such as Parkinson’s disease. Electrochemical methods which have the obvious advantages of simple operation and low-cost instrumentation were widely used for determination of DA. In order to improve the measurement performance of the electrochemical sensor, molecular imprinting technique and graphene have always been employed to increase the selectivity and sensitivity. Methods: An electrochemical sensor which has specific selectivity to (DA) was proposed based on the combination of a molecular imprinting polymer (MIP) with a graphene (GR) modified gold electrode. The performance and effect of MIP film were investigated by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) in the solution of 5.0 ×10-3 mol/L K3[Fe(CN)6] and K4[Fe(CN)6] with 0.2 mol/L KCl at room temperature. Results: This fabricated sensor has well repeatability and stability, and was used to determine the dopamine of urine. Under the optimized experiment conditions, the current response of the imprinted sensor was linear to the concentration of dopamine in the range of 1.0×10-7 ~ 1.0×10-5 mol/L, the linear equation was I (µA) = 7.9824+2.7210lgc (mol/L) with the detection limit of 3.3×10-8 mol/L. Conclusion: In this work, a highly efficient sensor for determination of DA was prepared with good sensitivity by GR and great selectivity of high special recognization ability by molecular imprinting membrane. This proposed sensor was used to determine the dopamine in human urine successfully.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 869 ◽  
Author(s):  
Raquel Pruna ◽  
Francisco Palacio ◽  
Isabel Fuentes ◽  
Clara Viñas ◽  
Francesc Teixidor ◽  
...  

A novel transparent and nanostructured ion-sensitive electrode based on indium tin oxide (ITO) coated with cobaltbis(dicarbollide)-doped poly(pyrrole) (PPy) is presented in this work. This metallacarborane-doped PPy was used as conducting polymer due to its high stability and chemical resistance. The ion-sensitive electrode was coupled to a miniaturized and low-cost potentiostat, in a final autonomous kit for potentiometric determination of pH. Qualitative calibration of the system revealed Nernstian behavior, resulting promising for novel point-of-care biomedical applications.


2020 ◽  
Vol 53 (9) ◽  
pp. 1472-1488
Author(s):  
Ling Cao ◽  
Zheng Li ◽  
Rui Jia ◽  
Li Chen ◽  
Ying Wu ◽  
...  

2013 ◽  
Vol 537 ◽  
pp. 161-164
Author(s):  
Xue Jiao Li ◽  
Cheng Zhang ◽  
Na Zhang

PZO (PbZrO3) coatings with different thicknesses were deposited onto Indium Tin Oxide ITO glass substrates at room temperature by magnetron sputtering technique. UV-Vis absorption spectra method and microhardness testing method were used to measure the thickness of coating. It was proved that the measuring results of film thickness by two kinds of methods were equivalent, and either one method can be alternatively used to determine the thickness of deposited films.


Sign in / Sign up

Export Citation Format

Share Document