The Effect of Casein Kinase 2 Inhibition on three Leukemic Cell Lines

2020 ◽  
Vol 15 (3) ◽  
pp. 209-215
Author(s):  
Luka Horvat ◽  
Mariastefania Antica ◽  
Maja Matulić

Background:: Casein Kinase 2 (CK2) is a Ser/Thr protein kinase that coregulates a great number of signalling pathways in the cell. It is involved in cell cycle regulation and cell proliferation, apoptosis, DNA damage response and gene transcription. Its substrates are numerous kinases and transcription factors. It was found to be upregulated in different tumours, and certain types of leukaemia are very sensitive to its inhibition. Objective:: We analysed the effects of casein kinase 2 inhibition on three leukaemia cell lines of B and T cell origin: Jurkat, a T cell line, CLL, a chronic B lymphocytic leukaemia cell line and 697, a pre-B acute lymphocytic leukaemia cell line. Besides cell proliferation and cytotoxicity analysis, the aim was to investigate the influence of CK2 inhibition on elements of the Notch signalling pathway. Notch signalling has an important role in blood cell differentiation, and CK2 regulates Ikaros, a tumour suppressor interfering with Notch signalling Methods:: and T leukaemia cells were treated with different concentrations of the CK2 inhibitor, CX-4945, for 6 days, and cell viability and proliferation were determined by Trypan Blue Exclusion Method. Analysis of gene expression was performed by RT-qPCR. Results:: All three cell lines were sensitive to CK2 inhibition and among them, 697 cells had two times lower IC50. In Jurkat and CLL cells changes in c-Myc and Notch pathway gene expression were found. Conclusion:: As CK2 is involved in numerous signalling circuits, we concluded that each cell type could have a cell-specific response in gene expression.

2019 ◽  
Vol 18 (11) ◽  
pp. 1551-1562 ◽  
Author(s):  
Abbas Kabir ◽  
Kalpana Tilekar ◽  
Neha Upadhyay ◽  
C.S. Ramaa

Background: Cancer being a complex disease, single targeting agents remain unsuccessful. This calls for “multiple targeting”, wherein a single drug is so designed that it will modulate the activity of multiple protein targets. Topoisomerase 2 (Top2) helps in removing DNA tangles and super-coiling during cellular replication, Casein Kinase 2 (CK2) is involved in the phosphorylation of a multitude of protein targets. Thus, in the present work, we have tried to develop dual inhibitors of Top2 and CK2. Objective: With this view, in the present work, 2 human proteins, Top2 and CK2 have been targeted to achieve the anti-proliferative effects. Methods: Novel 1-acetylamidoanthraquinone (3a-3y) derivatives were designed, synthesized and their structures were elucidated by analytical and spectral characterization techniques (FTIR, 1H NMR, 13C NMR and Mass Spectroscopy). The synthesized compounds were then subjected to evaluation of cytotoxic potential by the Sulforhodamine B (SRB) protein assay, using HL60 and K562 cell lines. Ten compounds were analyzed for Top2, CK2 enzyme inhibitory potential. Further, top three compounds were subjected to cell cycle analysis. Results: The compounds 3a to 3c, 3e, 3f, 3i to 3p, 3t and 3x showed excellent cytotoxic activity to HL-60 cell line indicating their high anti-proliferative potential in AML. The compounds 3a to 3c, 3e, 3f, 3i to 3p and 3y have shown good to moderate activity on K-562 cell line. Compounds 3e, 3f, 3i, 3x and 3y were found more cytotoxic than standard doxorubicin. In cell cycle analysis, the cells (79-85%) were found to arrest in the G0/G1 phase. Conclusion: We have successfully designed, synthesized, purified and structurally characterized 1- acetylamidoanthraquinone derivatives. Even though our compounds need design optimization to further increase enzyme inhibition, their overall anti-proliferative effects were found to be encouraging.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Yan-Guo Xi ◽  
Deng-Peng Ren ◽  
Jing-Yun Jin ◽  
Lei Zhu ◽  
Tai-Long Yi ◽  
...  

Objective. Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the function of CKIP-1 in glioma cells. Methods. The expression level of CKIP-1 protein was determined in gliomas tissues and cell lines by immunohistochemistry stain and western blotting while the association of CKIP-1 expression with prognosis was analyzed by Kaplan-Meier method and compared by log-rank test. CKIP-1 was overexpressed or silenced in gliomas cell lines. CCK-8, colony formation assay, and BrdU incorporation assay were used to determine cell proliferation and DNA synthesis. Cell cycle and apoptosis rate were determined with fluorescence-activated cell sorting (FACS) method. Then, expression of key members in AKT/GSK3β/β-catenin pathway was detected by western blot analysis. Results. In the present study, we reported new evidence that CKIP-1 was reversely associated with the proliferation of glioma cells and survival in glioma patients. Additionally, the overexpressed CKIP-1 significantly inhibited glioma cell proliferation. Further experiments revealed that CKIP-1 functioned through its antiproliferative and proapoptotic activity in glioma cells. Importantly, mechanistic investigations suggested that CKIP-1 sharply suppressed the activity of AKT by inhibiting the phosphorylation, markedly downregulated the phosphorylated GSK3β at Ser9, and promoted β-catenin degradation. Conclusions. Overall, our results provided new insights into the clinical significance and molecular mechanism of CKIP-1 in glioma, which indicated CKIP1 might function as a therapeutic target for clinical treatment of glioma.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 254-254
Author(s):  
Michele Milella ◽  
Maria Rosaria Ricciardi ◽  
Chiara Gregorj ◽  
Fabiana De Cave ◽  
Steven L. Abrams ◽  
...  

Abstract The Raf/MEK/ERK signaling module plays a pivotal role in the regulation of cell proliferation, survival, and differentiation. Our group, among others, has recently demonstrated that this pathway is frequently dysregulated in hematological malignancies and may constitute an attractive therapeutic target, particularly in AML. Here we investigated the effects of PD0325901, a novel MEK inhibitor, on phospho-protein expression, gene expression profiles, cell proliferation, and apoptosis in cell line models of AML, ALL, multiple myeloma (MM), ex vivo-cultured primary AML blasts, and oncogene-transformed hematopoietic cells. AML cell lines (OCI-AML2, OCI-AML3, HL-60) were strikingly sensitive to PD0325901 (IC50: 5–19 nM), NB4 (APL) and U266 (MM) showed intermediate sensitivity (IC50: 822 and 724 nM), while all the lymphoid cell lines tested and the myeloid cell lines U937 and KG1 were resistant (IC50 > 1000 nM). Cell growth inhibition was due to inhibition of cell cycle progression and induction of apoptosis. A statistically significant reduction in the proportion of S-phase cells (p=0.01) and increase in the percentage of apoptotic cells (p=0.019) was also observed in 18 primary AML samples in response to 100 nM PD0325901. Analysis of the correlation between sensitivity/resistance to PD0325901 and Ras/Raf mutation status is currently ongoing. PD0325901 effects were also examined in a panel of IL-3-dependent murine myeloid FDC-P1 cell lines transformed to grow in response to 11 different oncogenes in the absence of IL-3. Fms-, Ras-, Raf-1-, B-Raf-, MEK1-, IGF-1R-, and STAT5a-transformed FDC-P1 cells were very sensitive to PD0325901 (IC50: ~ 1 nM), while A-Raf-, BCR-ABL-, EGFR- or Src-transformed cells were 10 to 100 fold less sensitive (IC50: 10 to 100 nM); the parental, IL-3 dependent FDC-P1 cell line had an IC50 > 1000 nM. Analysis of the phosphorylation levels of 18 different target proteins after treatment with 10 nM PD0325901 showed a 5- to 8-fold reduction in ERK-1/2, observed only in sensitive cell lines, and a 2-fold reduction in JNK and STAT3 phosphorylation. PD0325901 (10 nM) treatment also profoundly altered the gene expression profile of the sensitive cell line OCI-AML3: 96 genes were modulated after 24 h (37 up- and 59 down-regulated), most of which involved in cell cycle regulation. Changes in cyclin D1 and D3, cyclin E, and cdc 25A were also validated at the protein level. Overall, PD0325901 shows potent growth-inhibitory and pro-apoptotic activity, indicating that MEK may be an appropriate therapeutic target in an array of different hematological malignancies. Further preclinical/clinical development of this compound is warranted, particularly in myeloid leukemias.


1999 ◽  
Vol 340 (2) ◽  
pp. 371-375 ◽  
Author(s):  
Kaushik DATTA ◽  
Shyam S. BISWAL ◽  
James P. KEHRER

The ability of various inhibitors of lipoxygenase (LOX) enzymes and 5-lipoxygenase-activating protein (FLAP) to induce apoptosis has implicated these pathways in the mechanism(s) of this form of cell death. Although FLAP plays an important role in 5-LOX activity, this protein is found at high levels in some cells lacking LOX, suggesting it might mediate other effects. Furthermore, the concentration of MK886, a FLAP inhibitor, required to induce apoptosis is ≈ 100-fold more than that required to inhibit LOX, and this compound remains effective in cells lacking LOX. The present study examines the role of FLAP in MK886-induced apoptosis. MK886 induced apoptosis in WSU cells, a human chronic lymphocytic leukaemia cell line that lacks FLAP protein and mRNA, suggesting that this agent is acting independently of FLAP. This conclusion was further supported by the fact that a more specific FLAP inhibitor, MK591, induced only minimal apoptosis in FL5.12 cells, a murine prolymphoid cell line containing FLAP. The role of FLAP was examined more directly by decreasing its expression by more than 50% in FL5.12 cells treated with 10 μM of an antisense oligonucleotide for 48 h. This change in FLAP was not accompanied by any increase in apoptosis. Furthermore, FLAP-depleted cells exhibited the same level of apoptosis 8 h after treatment with 10 μM MK886, as did control cells. The increased fluorescence seen in MK886-treated cells loaded with carboxydichlorofluorescein indicates that oxidative reactions are stimulated by this compound, possibly via the release of fatty acids from fatty acid-binding proteins and their subsequent oxidation.


1999 ◽  
Vol 79 (5-6) ◽  
pp. 831-837 ◽  
Author(s):  
X F Hu ◽  
A Slater ◽  
D Rischin ◽  
P Kantharidis ◽  
J D Parkin ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5792
Author(s):  
Laura Francesca Pisani ◽  
Gian Eugenio Tontini ◽  
Carmine Gentile ◽  
Beatrice Marinoni ◽  
Isabella Teani ◽  
...  

Interleukin (IL)-33 is a member of the interleukin (IL)-1 family of cytokines linked to the development of inflammatory conditions and cancer in the gastrointestinal tract. This study is designed to investigate whether IL-33 has a direct effect on human gastric epithelial cells (GES-1), the human gastric adenocarcinoma cell line (AGS), and the gastric carcinoma cell line (NCI-N87) by assessing its role in the regulation of cell proliferation, migration, cell cycle, and apoptosis. Cell cycle regulation was also determined in ex vivo gastric cancer samples obtained during endoscopy and surgical procedures. Cell lines and tissue samples underwent stimulation with rhIL-33. Proliferation was assessed by XTT and CFSE assays, migration by wound healing assay, and apoptosis by caspase 3/7 activity assay and annexin V assay. Cell cycle was analyzed by means of propidium iodine assay, and gene expression regulation was assessed by RT-PCR profiling. We found that IL-33 has an antiproliferative and proapoptotic effect on cancer cell lines, and it can stimulate proliferation and reduce apoptosis in normal epithelial cell lines. These effects were also confirmed by the analysis of cell cycle gene expression, which showed a reduced expression of pro-proliferative genes in cancer cells, particularly in genes involved in G0/G1 and G2/M checkpoints. These results were confirmed by gene expression analysis on bioptic and surgical specimens. The aforementioned results indicate that IL-33 may be involved in cell proliferation in an environment- and cell-type-dependent manner.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0130195 ◽  
Author(s):  
Andreas Agathangelidis ◽  
Lydia Scarfò ◽  
Federica Barbaglio ◽  
Benedetta Apollonio ◽  
Maria Teresa Sabrina Bertilaccio ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0134748
Author(s):  
Andreas Agathangelidis ◽  
Lydia Scarfò ◽  
Federica Barbaglio ◽  
Benedetta Apollonio ◽  
Maria Teresa Sabrina Bertilaccio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document