Using the Chou’s Pseudo Component to Predict the ncRNA Locations Based on the Improved K-Nearest Neighbor (iKNN) Classifier

2020 ◽  
Vol 15 (6) ◽  
pp. 563-573
Author(s):  
Chengyan Wu ◽  
Qianzhong Li ◽  
Ru Xing ◽  
Guo-Liang Fan

Background: The non-coding RNA identification at the organelle genome level is a challenging task. In our previous work, an ncRNA dataset with less than 80% sequence identity was built, and a method incorporating an increment of diversity combining with support vector machine method was proposed. Objective: Based on the ncRNA_361 dataset, a novel decision-making method-an improved KNN (iKNN) classifier was proposed. Methods: In this paper, based on the iKNN algorithm, the physicochemical features of nucleotides, the degeneracy of genetic codons, and topological secondary structure were selected to represent the effective ncRNA characters. Then, the incremental feature selection method was utilized to optimize the feature set. Results: The results of iKNN indicated that the decision-making method of mean value is distinctly superior to the traditional decision-making method of majority vote the Increment of Diversity Combining Support Vector Machine (ID-SVM). The iKNN algorithm achieved an overall accuracy of 97.368% in the jackknife test, when k=3. Conclusion: It should be noted that the triplets of the structure-sequence mode under reading frames not only contains the entire sequence information but also reflects whether the base was paired or not, and the secondary structural topological parameters further describe the ncRNA secondary structure on the spatial level. The ncRNA dataset and the iKNN classifier are freely available at http://202.207.14.87:8032/fuwu/iKNN/index.asp.

2017 ◽  
Vol 23 (5) ◽  
pp. 641-649 ◽  
Author(s):  
Rifat SONMEZ ◽  
Burak SÖZGEN

The bid/no bid decision is an important and complex process, and is impacted by numerous variables that are related to the contractor, project, client, competitors, tender and market conditions. Despite the complexity of bid decision making process, in the construction industry the majority of bid/no bid decisions is made informally based on experience, judgment, and perception. In this paper, a procedure based on support vector machines and backward elimination regression is presented for improving the existing bid decision making methods. The method takes advan­tage of the strong generalization properties of support vector machines and attempts to further enhance generalization performance by eliminating insignificant input variables. The method is implemented for bid/no bid decision making of offshore oil and gas platform fabrication projects to achieve a parsimonious support vector machine classifier. The performance of the support vector machine classifier is compared with the performances of the worth evaluation model, linear regression, and neural network classifiers. The results show that the support vector machine classifier outperforms existing methods significantly, and the proposed procedure provides a powerful tool for bid/no bid decision making. The results also reveal that elimination of the insignificant input variables improves generalization performance of the sup­port vector machines.


2005 ◽  
Vol 37 (11) ◽  
pp. 759-766 ◽  
Author(s):  
Yan-Zhi Guo ◽  
Meng-Long Li ◽  
Ke-Long Wang ◽  
Zhi-Ning Wen ◽  
Min-Chun Lu ◽  
...  

Abstract Although the sequence information on G-protein coupled receptors (GPCRs) continues to grow, many GPCRs remain orphaned (i.e. ligand specificity unknown) or poorly characterized with little structural information available, so an automated and reliable method is badly needed to facilitate the identification of novel receptors. In this study, a method of fast Fourier transform-based support vector machine has been developed for predicting GPCR subfamilies according to protein's hydrophobicity. In classifying Class B, C, D and F subfamilies, the method achieved an overall Matthew's correlation coefficient and accuracy of 0.95 and 93.3%, respectively, when evaluated using the jackknife test. The method achieved an accuracy of 100% on the Class B independent dataset. The results show that this method can classify GPCR subfamilies as well as their functional classification with high accuracy. A web server implementing the prediction is available at http://chem.scu.edu.cn/blast/Pred-GPCR.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668596 ◽  
Author(s):  
Fuqiang Sun ◽  
Xiaoyang Li ◽  
Haitao Liao ◽  
Xiankun Zhang

Rapid and accurate lifetime prediction of critical components in a system is important to maintaining the system’s reliable operation. To this end, many lifetime prediction methods have been developed to handle various failure-related data collected in different situations. Among these methods, machine learning and Bayesian updating are the most popular ones. In this article, a Bayesian least-squares support vector machine method that combines least-squares support vector machine with Bayesian inference is developed for predicting the remaining useful life of a microwave component. A degradation model describing the change in the component’s power gain over time is developed, and the point and interval remaining useful life estimates are obtained considering a predefined failure threshold. In our case study, the radial basis function neural network approach is also implemented for comparison purposes. The results indicate that the Bayesian least-squares support vector machine method is more precise and stable in predicting the remaining useful life of this type of components.


Sign in / Sign up

Export Citation Format

Share Document