Synthesis and In Vitro Evaluation of Tetrahydroquinoline Derivatives as Antiproliferative Compounds of Breast Cancer via Targeting the GPER

2019 ◽  
Vol 19 (6) ◽  
pp. 760-771 ◽  
Author(s):  
Oscar J. Zacarías-Lara ◽  
David Méndez-Luna ◽  
Gustavo Martínez-Ruíz ◽  
José R. García-Sanchéz ◽  
Manuel J. Fragoso-Vázquez ◽  
...  

Background: Some reports have demonstrated the role of the G Protein-coupled Estrogen Receptor (GPER) in growth and proliferation of breast cancer cells. Objective: In an effort to develop new therapeutic strategies against breast cancer, we employed an in silico study to explore the binding modes of tetrahydroquinoline 2 and 4 to be compared with the reported ligands G1 and G1PABA. Methods: This study aimed to design and filter ligands by in silico studies determining their Lipinski's rule, toxicity and binding properties with GPER to achieve experimental assays as anti-proliferative compounds of breast cancer cell lines. Results: In silico studies suggest as promissory two tetrahydroquinoline 2 and 4 which contain a carboxyl group instead of the acetyl group (as is needed for G1 synthesis), which add low (2) and high hindrance (4) chemical moieties to explore the polar, hydrophobic and hindrance effects. Docking and molecular dynamics simulations of the target compounds were performed with GPER to explore their binding mode and free energy values. In addition, the target small molecules were synthesized and assayed in vitro using breast cancer cells (MCF-7 and MDA-MB-231). Experimental assays showed that compound 2 decreased cell proliferation, showing IC50 values of 50µM and 25µM after 72h of treatment of MCF-7 and MDA-MB-231 cell lines, respectively. Importantly, compound 2 showed a similar inhibitory effect on proliferation as G1 compound in MDA-MB-231 cells, suggesting that both ligands reach the GPER-binding site in a similar way, as was demonstrated through in silico studies. Conclusion: A concentration-dependent inhibition of cell proliferation occurred with compound 2 in the two cell lines regardless of GPER.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
pp. 1-11
Author(s):  
Meng Li ◽  
Wenmin Zhang ◽  
Xiaodan Yang ◽  
Guo An ◽  
Wei Zhao

BACKGROUND: The voltage-gated calcium channel subunit alpha 2 delta 1 (α2δ1) is a functional tumor initial cells (TICs) marker for some solid cancer cells. This study aimed to investigate whether α2δ1 can be used as a potential TIC marker for breast cancer cells. METHODS: α2δ1+ and α2δ1- cells were identified and sorted from the breast cancer cell lines MDA-MB-231, MDA-MB-435s and ZR-75-1 by Immunofluorescence (IF) and Fluorescent-activated cell sorting (FACS) analyses. Spheroid formation in vitro and tumorigenesis in NOD/SCID mice were assessed to determine the self-renewal and serial transplantation abilities of these cells. Using a lentivirus infection system for α2δ1 in breast cancer cell lines, we determined the mRNA levels of stemnessassociated genes by quality real-time PCR (qRT-PCR). Boyden chamber and wounding assays were further performed to detect the migration of α2δ1 overexpression cells. Bioinformatics explored the relationship of molecular classification of breast cancer and drug resistance. RESULTS: α2δ1 presents on the cytomembrane of breast cancer cells, with a positive rate of 1.5–3%. The α2δ1+ cells in breast cancer cell lines have a stronger self-renewal ability and tumor initiating properties in vitro and in vivo. Overexpressing α2δ1 successfully enhanced the sphere-forming efficiency, and upregulated the expression of stemness-associated genes, and increased cell migration. However, seldom significant was available between estrogen receptor +/- (ER+/-), progesterone receptor (PR+/-), and Her2+/-. CONCLUSIONS: Breast cancer cells positive for the α2δ1 charactered tumor initiation, and α2δ1 is a potential TIC marker for breast cancer that further promotes the migration.


2004 ◽  
Vol 32 (3) ◽  
pp. 793-810 ◽  
Author(s):  
MA Greeve ◽  
RK Allan ◽  
JM Harvey ◽  
JM Bentel

Androgens inhibit the growth of breast cancer cells in vitro and in vivo by mechanisms that remain poorly defined. In this study, treatment of asynchronously growing MCF-7 breast cancer cells with the androgen, 5alpha-dihydrotestosterone (DHT), was shown to inhibit cell proliferation and induce moderate increases in the proportion of G1 phase cells. Consistent with targeting the G1-S phase transition, DHT pretreatment of MCF-7 cultures impeded the serum-induced progression of G1-arrested cells into S phase and reduced the kinase activities of cyclin-dependent kinase (Cdk)4 and Cdk2 to less than 50% of controls within 3 days. DHT treatment was associated with greater than twofold increases in the levels of the Cdk inhibitor, p27(Kip1), while p21(Cip1/Waf1) protein levels remained unchanged. During the first 24 h of DHT treatment, levels of Cdk4-associated p21(Cip1/Waf1) and p27(Kip1) were reduced coinciding with decreased levels of Cdk4-associated cyclin D3. In contrast, DHT treatment caused increased accumulation of Cdk2-associated p21(Cip1/Waf1), with no significant alterations in levels of p27(Kip1) bound to Cdk2 complexes. These findings suggest that DHT reverses the Cdk4-mediated titration of p21(Cip1/Waf1) and p27(Kip1) away from Cdk2 complexes, and that the increased association of p21(Cip1/Waf1) with Cdk2 complexes in part mediates the androgen-induced growth inhibition of breast cancer cells.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 743
Author(s):  
Oluwaseun Akinyele ◽  
Heather M. Wallace

Breast cancer is a complex heterogeneous disease with multiple underlying causes. The polyamines putrescine, spermidine, and spermine are polycationic molecules essential for cell proliferation. Their biosynthesis is upregulated in breast cancer and they contribute to disease progression. While elevated polyamines are linked to breast cancer cell proliferation, there is little evidence to suggest breast cancer cells of different hormone receptor status are equally dependent on polyamines. In this study, we characterized the responses of two breast cancer cells, ER+ (oestrogen receptor positive) MCF-7 and ER- MDA-MB-231 cell lines, to polyamine modulation and determined the requirement of each polyamine for cancer cell growth. The cells were exposed to DFMO (a polyamine pathway inhibitor) at various concentrations under different conditions, after which several growth parameters were determined. Exposure of both cell lines to DFMO induced differential growth responses, MCF-7 cells showed greater sensitivity to polyamine pathway inhibition at various DFMO concentrations than the MDA-MB-231 cells. Analysis of intracellular DFMO after withdrawal from growth medium showed residual DFMO in the cells with concomitant decreases in polyamine content, ODC protein level, and cell growth. Addition of exogenous polyamines reversed the cell growth inhibition, and this growth recovery appears to be partly dependent on the spermidine content of the cell. Similarly, DFMO exposure inhibits the global translation state of the cells, with spermidine addition reversing the inhibition of translation in the breast cancer cells. Taken together, these data suggest that breast cancer cells are differentially sensitive to the antitumour effects of polyamine depletion, thus, targeting polyamine metabolism might be therapeutically beneficial in breast cancer management based on their subtype.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Thandi Mqoco ◽  
André Stander ◽  
Anna-Mart Engelbrecht ◽  
Anna M Joubert

Current chemotherapeutic agents have many side effects and are toxic to normal cells, providing impetus to identify agents that can effectively eliminate tumorigenic cells without damaging healthy cells. The aim of this study was to examine whether combining a novel BRD4 inhibitor, ITH-47, with the antimitotic estradiol analogue, ESE-15-ol, would have a synergistic effect on inhibiting the growth of two different breast cancer cell lines in vitro. Our docking and molecular dynamics studies showed that compared to JQ1, ITH-47 showed a similar binding mode with hydrogen bonds forming between the ligand nitrogens of the pyrazole, ASN99, and water of the BRD4 protein. Data from cell growth studies revealed that the GI50 of ITH-47 and ESE-15-ol after 48 hours of exposure was determined to be 15 μM and 70 nM, respectively, in metastatic MDA-MB-231 breast cancer cells. In tumorigenic MCF-7 breast cancer cells, the GI50 of ITH-47 and ESE-15-ol was 75 μM and 60 nM, respectively, after 48 hours of exposure. Furthermore, the combination of 7.5 μM and 14 nM of ITH-47 and ESE-15-ol, respectively, resulted in 50% growth inhibition of MDA-MB-231 cells resulting in a synergistic combination index (CI) of 0.7. Flow cytometry studies revealed that, compared to the control, combination-treated MDA-MB-231 cells had significantly more cells present in the sub-G1 phase and the combination treatment induced apoptosis in the MDA-MB-231 cells. Compared to vehicle-treated cells, the combination-treated cells showed decreased levels of the BRD4, as well as c-Myc protein after 48 hours of exposure. In combination, the selective BRD4 inhibitor, ITH-47, and ESE-15-ol synergistically inhibited the growth of MDA-MB-231 breast cancer cells, but not of the MCF-7 cell line. This study provides evidence that resistance to BRD4 inhibitors may be overcome by combining inhibitors with other compounds, which may have treatment potential for hormone-independent breast cancers.


2017 ◽  
Vol 17 (2) ◽  
pp. 542-550 ◽  
Author(s):  
Nariman K. Badr El-Din ◽  
Ashraf Z. Mahmoud ◽  
Tahia Ali Hassan ◽  
Mamdooh Ghoneum

Our earlier studies have demonstrated that phagocytosis of baker’s yeast ( Saccharomyces cerevisiae) induces apoptosis in different cancer cell lines in vitro and in vivo. This study aimed to examine how baker’s yeast sensitizes murine and human breast cancer cells (BCC) to paclitaxel in vitro. This sensitizing effect makes lower concentrations of chemotherapy more effective at killing cancer cells, thereby enhancing the capacity of treatment. Three BCC lines were used: the metastatic murine 4T1 line, the murine Ehrlich ascites carcinoma (EAC) line, and the human breast cancer MCF-7 line. Cells were cultured with different concentrations of paclitaxel in the presence or absence of baker’s yeast. Cell survival and the IC50 values were determined by MTT assay and trypan blue exclusion method. Percent of DNA damage, apoptosis, and cell proliferation were examined by flow cytometry. Yeast alone and paclitaxel alone significantly decreased 4T1 cell viability postculture (24 and 48 hours), caused DNA damage, increased apoptosis, and suppressed cell proliferation. Baker’s yeast in the presence of paclitaxel increased the sensitivity of 4T1 cells to chemotherapy and caused effects that were greater than either treatment alone. The chemosensitizing effect of yeast was also observed with murine EAC cells and human MCF-7 cells, but to a lesser extent. These data suggest that dietary baker’s yeast is an effective chemosensitizer and can enhance the apoptotic capacity of paclitaxel against breast cancer cells in vitro. Baker’s yeast may represent a novel adjuvant for chemotherapy treatment.


2003 ◽  
Vol 23 (19) ◽  
pp. 6887-6900 ◽  
Author(s):  
M. A. Christine Pratt ◽  
Tanya E. Bishop ◽  
Dawn White ◽  
Gordon Yasvinski ◽  
Michel Ménard ◽  
...  

ABSTRACT About one-third of breast cancers express a functional estrogen (β-estradiol [E2]) receptor (ER) and are initially dependent on E2 for growth and survival but eventually progress to hormone independence. We show here that ER+, E2-independent MCF-7/LCC1 cells derived from E2-dependent MCF-7 cells contain elevated basal NF-κB activity and elevated expression of the transcriptional coactivator Bcl-3 compared with the parental MCF-7 line. LCC1 NF-κB activity consists primarily of p50 dimers, although low levels of a p65/p50 complex are also present. The ER− breast cancer cell lines harbor abundant levels of both NF-κB complexes. In contrast, nuclear extracts from MCF-7 cells contain a significantly lower level of p50 and p65 than do LCC1 cells. Estrogen withdrawal increases both NF-κB DNA binding activity and expression of Bcl-3 in MCF-7 and LCC1 cells in vitro and in vivo. Tumors derived from MCF-7 cells ectopically expressing Bcl-3 remain E2 dependent but display a markedly higher tumor establishment and growth rate compared to controls. Expression of a stable form of IκBα in LCC1 cells severely reduced nuclear expression of p65 and the p65/p50 DNA binding heterodimer. Whereas LCC1 tumors in nude mice were stable or grew, LCC1(IκBα) tumors regressed after E2 withdrawal. Thus, both p50/Bcl-3- and p65/p50-associated NF-κB activities are activated early in progression and serve differential roles in growth and hormone independence, respectively. We propose that E2 withdrawal may initiate selection for hormone independence in breast cancer cells by activation of NF-κB and Bcl-3, which could then supplant E2 by providing both survival and growth signals.


2021 ◽  
Author(s):  
Abdolamir Ghadaksaz ◽  
Abbas Ali Imani Fooladi ◽  
Hamideh Mahmoodzadeh Hosseini ◽  
Taher Nejad Satari ◽  
Mohsen Amin

Abstract PurposeTargeted cancer therapies based on overexpressed receptors and the fractions containing immunotoxins and bacterial metabolites are one of the well-known methods to overcome the chemotherapy resistance of cancer cells. In this paper, we design ARA-linker-TGFαL3, using Arazyme, a Serratia proteamaculans metabolite, and a third loop segment of TGFα to target EGFR expressing breast cancer cells.MethodsAfter cloning in pET28a (+), the expression of recombinant protein was optimized in E. coli strain BL21 (DE3). MDA-MB-468 (EGFR positive) and MDA-MB-453 (EGFR negative) breast cancer cell lines were employed. Also, the chemotherapeutic drug, Taxotere (Docetaxel), was employed to compare cytotoxicity effects. Cell ELISA assessed the binding affinity of recombinant proteins to the receptor, and the cytotoxicity was detected by MTT and lactate dehydrogenase release assays. The interfacing with cancer cell adhesion was evaluated. Furthermore, the induction of apoptosis was examined by using flow cytometric analysis, and caspase-3 activity assay. Moreover, RT-PCR was conducted to study the expression of apoptosis (bax, bcl2, and casp3), angiogenesis (vegfr2), and metastasis (mmp2 and mmp9) genes. ResultsARA-linker-TGFαL3 revealed a higher binding affinity, cytotoxicity, and early apoptosis induction in MDA-MB-468 compared to the effects of Arazyme while both recombinant proteins showed similar effects on MDA-MB-453. In addition, the Taxotere caused the highest cytotoxicity on cancer cells through induction of late apoptosis. Meanwhile, the expression of angiogenesis and metastasis genes was decreased in both cell lines after treatment with either ARA-linker-TGFαL3 or Arazyme. ConclusionsOur in vitro results indicated the therapeutic effect of ARA-linker-TGFαL3 on breast cancer cells.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenjie Shi ◽  
Daojun Hu ◽  
Yu Xing ◽  
Rui Zhuo ◽  
Qiufeng Lao ◽  
...  

Vacuolar protein sorting–associated protein 28 (VPS28), one of the four cytosolic proteins comprising the endosomal sorting complex required for the transport I (ESCRT-I) component, has been reported to be linked to various cancers. However, less evidence is available regarding the involvement of VPS28 in breast cancer. To this end, this study focused on exploring the function of VPS28 in breast cancer cells using the in silico analysis. VPS28 expression pattern data in breast cancer tissues were collected using the Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases and analyzed to assess the association of VPS28 with breast cancer prognosis. The elevated VPS28 expression was found in breast cancer tissues and was associated with a poor prognosis (p &lt; 0.001). A higher VPS28 expression indicated a short survival duration (HR = 2.43; 95% CI: 1.44–4.1; p &lt; 0.001). The CCLE database showed that VPS28 was expressed in breast cancer cell lines. The upstream targets of VPS28 were identified using the mirDIP, starBase, and TargetScan online tools. The correlation and binding relationship between miR-491-5p and VPS28 was analyzed. VPS28 or miR-491-5p gain and loss of function experiments were performed to verify their potential effect on the biological functions of breast cancer cells. Knockdown of VPS28 was shown to suppress the biological functions and enhance the apoptosis of breast cancer cell lines. Micro RNA-491-5p, identified as a posttranscriptional regulator of VPS28, was downregulated in breast cancer tissues. In contrast to the miR-491-5p inhibitor, the miR-491-5p mimic could suppress the migration, wound healing ability, and proliferation, while accelerating apoptosis. However, co-transfection of VPS28 and miR-491-5p counteracted the effect of the miR-491-5p mimic on breast cancer cell functions. Thus, our in silico analysis demonstrates that miR-491-5p can suppress breast cancer progression by attenuating the expression of VPS28.


2015 ◽  
Vol 33 (28_suppl) ◽  
pp. 135-135
Author(s):  
Ye-Won Jeon ◽  
Youngjin Suh

135 Background: The anti-cancer effects of celecoxib and luteolin are well known. Although our previous study demonstrated that the combination of celecoxib and luteolin synergistically inhibits breast tumor growth compared with each of the treatments alone, we did not uncover the molecular mechanisms of these effects. The aims of our present study were to compare the effects of a celecoxib and luteolin combination treatment in four different human breast cell lines and to determine the mechanisms of action in vitro and in vivo. Methods: Using MCF-7, MCF7/HER18, MDA-MB-231 and SkBr3 human breast cancer cells, proliferation assay, apoptosis assay, inhibition assay with MEK and PI3K inhibitor in addition to western blotting and xenograft study after treatment with celecoxib and luteolin. Results: The synergistic effects of a celecoxib and luteolin combination treatment yielded significantly greater cell growth inhibition in all four breast cancer cell lines compared with the single agents alone. In particular, combined celecoxib and luteolin treatment significantly decreased the growth of MDA-MB-231 cancer cells in vivo compared with either agent alone. The celecoxib and luteolin combination treatment induced synergistic effects via Akt inactivation and extracellular signal-regulated kinase (ERK) signaling inhibition in MCF-7 and MCF7/HER18 cells and via Akt inactivation and ERK signaling activation in MDA-MB-231 and SkBr3 cells. Conclusions: These results demonstrate the synergistic anti-tumor effect of the celecoxib and luteolin combination treatment in different four breast cancer cell lines, thus introducing the possibility of this combination as a new treatment modality.


Sign in / Sign up

Export Citation Format

Share Document