Heterocyclic Compounds Bearing Triazine Scaffold and Their Biological Significance: A Review

2020 ◽  
Vol 20 (1) ◽  
pp. 4-28
Author(s):  
Tarawanti Verma ◽  
Manish Sinha ◽  
Nitin Bansal

Benzene is a six-membered hydrocarbon ring system and if three carbon-hydrogen units of benzene ring are replaced by nitrogen atoms then triazine is formed. Triazines are present in three isomeric forms 1,2,3- triazine, 1,2,4-triazine, and 1,3,5-triazine according to the position of the nitrogen atom. These are weak bases having weaker resonance energy than benzene, so nucleophilic substitution is preferred than electrophilic substitution. Triazine is an interesting class of heterocyclic compounds in medicinal chemistry. Numerous synthetic derivatives of triazine have been prepared and evaluated for a wide spectrum of biological activities in different models with desired findings such as antibacterial, antifungal, anti-cancer, antiviral, antimalarial, antiinflammatory, antiulcer, anticonvulsant, antimicrobial, insecticidal and herbicidal agents. Triazine analogs have exposed potent pharmacological activity. So, triazine nucleus may be considered as an interesting core moiety for researchers for the development of future drugs.

2020 ◽  
Vol 24 (15) ◽  
pp. 1669-1716 ◽  
Author(s):  
Thoraya A. Farghaly ◽  
Sami A. Al-Hussain ◽  
Zeinab A. Muhammad ◽  
Magda A. Abdallah ◽  
Magdi E. A. Zaki

Perimidines are peri-naphtho-fused derivatives of pyrimidine. They are of particular interest as they are a rare example of an azine in which the lone pair of electrons of pyrrole-like nitrogen participates in the π-system of the molecule. Perimidine is an interesting class of heterocyclic compounds. Various synthetic analogs of perimidines have been prepared and evaluated for many pharmacological activities in different models with desired findings. They exhibit biological activities as antitumor, antiulcer, antimicrobial, and antifungal agents. This review is an attempt to organize the synthesis and chemical reactions of perimidine analogs reported to date systematically since 1955. It should be noted that this review is the first one that includes the preparation and reactions of the perimidine ring.


Author(s):  
Bilquees Bano ◽  
Kanwal ◽  
Khalid Mohammed Khan ◽  
Almas Jabeen ◽  
Aisha Faheem ◽  
...  

Background:: Quinolines are important class of heterocyclic compounds possessing wide range of biological activities. Previously, we had identified Schiff bases of quinoline as potential anti-inflammatory agents, thus the current work is the continuation of our previous study. Objective:: In the current study 3-, 5-, and 8-sulfonamide and 8-sulfonate derivatives of quinoline (1-50) were synthesized and their antiinflammatory potential was evaluated. These synthetic analogs were evaluated for their anti-inflammatory activity via ROS (Reactive oxygen species) inhibitory effect produced from phagocytes from human whole blood. Methods:: The sulfonamide and sulfonate derivatives of quinoline were synthesized via treating 5-, 3-, 8-amino, and 8-hydroxy quinoline with different substituted sulfonyl chlorides in pyridine. The synthetic molecules were characterized using various spectroscopic techniques and screened for their anti-inflammatory potential. Results and Discussion:: Among the synthetic derivatives 1-50, six compounds showed good to moderate anti-inflammatory activity. Compounds 47 (IC50 = 2.9 ± 0.5 μg/mL), 36 (IC50 = 3.2 ± 0.2 μg/mL), and 24 (IC50 = 6.7 ± 0.3 μg/mL) exhibited enhanced activity as compared to the standard ibuprofen (IC50 = 11.2 ± 1.9 μg/mL). Compounds 20 (IC50 = 25.5 ± 0.7 μg/mL), 50 (IC50 = 42.9 ± 5.6 μg/mL), and 8 (IC50 = 53.9 ± 3.1 μg/mL) were moderately active, however, rest of the compounds were found to be inactive. Conclusion:: The sulfonamide and sulfonate derivatives of quinoline were found to have promising anti-inflammatory activity. Further studies on the modification of these molecules may leads to the discovery of new and potential anti-inflammatory agents.


2019 ◽  
Author(s):  
Chem Int

A series of heterocyclic compounds incorporating pyridazine moiety were for diverse biological activities. Pyridazines and pyridazinones derivatives showed wide spectrum of biological activities such as vasodialator, cardiotonic, anticonvulsant, antihypertensive, antimicrobial, anti-inflammatory, analgesic, anti-feedant, herbicidal, and various other biological, agrochemical and industrial chemical activities. The results illustrated that the synthesized pyridazine/pyridazine compounds have diverse and significant biological activities. Mechanistic insights into the biological properties of pyridazinone derivatives and various synthetic techniques used for their synthesis are also described.


Author(s):  
Sharuti Mehta ◽  
Anil Kumar Sharma ◽  
Rajesh K. Singh

: Andrographis paniculata (Burm.f.) Nees (Acanthaceae) is a herbaceous plant and commonly called 'King of Bitters'. It has gained attraction as a potential hepatoprotective agent and a natural molecule with various biological activities viz. anticancer, immunomodulatory, anti-inflammatory, antibacterial, neuroprotective, and so on. The andrographolide is one of the main diterpenoids responsible for the drug's bitter taste and various therapeutic activities. The poor cellular permeability, solubility and short biological half-life of its pure components limit its distribution to the target tissue. To conquer this obstacle, various researchers worldwide have been working on designing the synthetic derivatives of its active components and nanoformulations to improve the drug's efficiency and selectivity to develop more active leads for biomedical applications. This article discussed the recent research on synthetic derivatives, including their possible therapeutic applications and structure-activity relationship (SAR). Additionally, this article also presents the essential information concerning the various nanoformulations developed to increase the delivery of pure compound/plant extract to the target site, thereby improving the drug's efficacy for multiple ailments.


2013 ◽  
Vol 23 (2) ◽  
pp. 555-563 ◽  
Author(s):  
Yunmei Liu ◽  
Xiudao Song ◽  
Jun He ◽  
Xing Zheng ◽  
Houlv Wu

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 3036
Author(s):  
Ashraf A. Aly ◽  
Alaa A. Hassan ◽  
Maysa M. Makhlouf ◽  
Stefan Bräse

Mercapto-substituted 1,2,4-triazoles are very interesting compounds as they play an important role in chemopreventive and chemotherapeutic effects on cancer. In recent decades, literature has been enriched with sulfur- and nitrogen-containing heterocycles which are used as a basic nucleus of different heterocyclic compounds with various biological applications in medicine and also occupy a huge part of natural products. Therefore, we shed, herein, more light on the synthesis of this interesting class and its application as a biologically active moiety. They might also be suitable as antiviral and anti-infective drugs.


Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4630 ◽  
Author(s):  
Masayuki Ishihara ◽  
Shingo Nakamura ◽  
Yoko Sato ◽  
Tomohiro Takayama ◽  
Koichi Fukuda ◽  
...  

Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.


2020 ◽  
Vol 21 (16) ◽  
pp. 5920 ◽  
Author(s):  
Vuyolwethu Khwaza ◽  
Opeoluwa O. Oyedeji ◽  
Blessing A. Aderibigbe

Ursolic acid is a pharmacologically active pentacyclic triterpenoid derived from medicinal plants, fruit, and vegetables. The pharmacological activities of ursolic acid have been extensively studied over the past few years and various reports have revealed that ursolic acid has multiple biological activities, which include anti-inflammatory, antioxidant, anti-cancer, etc. In terms of cancer treatment, ursolic acid interacts with a number of molecular targets that play an essential role in many cell signaling pathways. It suppresses transformation, inhibits proliferation, and induces apoptosis of tumor cells. Although ursolic acid has many benefits, its therapeutic applications in clinical medicine are limited by its poor bioavailability and absorption. To overcome such disadvantages, researchers around the globe have designed and developed synthetic ursolic acid derivatives with enhanced therapeutic effects by structurally modifying the parent skeleton of ursolic acid. These structurally modified compounds display enhanced therapeutic effects when compared to ursolic acid. This present review summarizes various synthesized derivatives of ursolic acid with anti-cancer activity which were reported from 2015 to date.


2009 ◽  
Vol 6 (4) ◽  
pp. 1133-1138 ◽  
Author(s):  
Niti Bhardwaj ◽  
S. K. Saraf ◽  
Pankaj Sharma ◽  
Pradeep Kumar

1,3,4-Oxadiazoles show various biological activities and have been synthesized from different compounds. 1,3,4-oxadiazole is popularly known for its antimicrobial, anti-inflammatory, pesticidal and antihypertensive activitiesetc. It is well known that the synthesis of heterocyclic compounds tend to contain multi-structure in a molecule. The ring formation involves the condensation reaction. The challenge is to develop the ring system by incorporating the indole nucleus into it through the proposed reaction scheme. There are two free positions for the substitution in the oxadiazole ring system. In this study, it was planned to incorporate the oxadiazole ring system into indole ring. Synthesis of derivatives of 1,3,4-oxadiazoles from different benzaldehydes Characterization of the synthesized compounds along with their antimicrobial activity on different strains.


Sign in / Sign up

Export Citation Format

Share Document