A Novel Prion Protein-Tyrosine Hydroxylase Interaction

2014 ◽  
Vol 13 (5) ◽  
pp. 896-908 ◽  
Author(s):  
Mattia Vicario ◽  
Adriana Zagari ◽  
Vincenzo Granata ◽  
Francesca Munari ◽  
Stefano Mammi ◽  
...  
2016 ◽  
Vol 41 (7) ◽  
pp. 1691-1699 ◽  
Author(s):  
Marcio Henrique Mello da Luz ◽  
Isaias Glezer ◽  
Andre Machado Xavier ◽  
Marcelo Alberti Paiva da Silva ◽  
Jessica Monteiro Volejnik Pino ◽  
...  

2004 ◽  
Vol 71 ◽  
pp. 193-202 ◽  
Author(s):  
David R Brown

Prion diseases, also referred to as transmissible spongiform encephalopathies, are characterized by the deposition of an abnormal isoform of the prion protein in the brain. However, this aggregated, fibrillar, amyloid protein, termed PrPSc, is an altered conformer of a normal brain glycoprotein, PrPc. Understanding the nature of the normal cellular isoform of the prion protein is considered essential to understanding the conversion process that generates PrPSc. To this end much work has focused on elucidation of the normal function and activity of PrPc. Substantial evidence supports the notion that PrPc is a copper-binding protein. In conversion to the abnormal isoform, this Cu-binding activity is lost. Instead, there are some suggestions that the protein might bind other metals such as Mn or Zn. PrPc functions currently under investigation include the possibility that the protein is involved in signal transduction, cell adhesion, Cu transport and resistance to oxidative stress. Of these possibilities, only a role in Cu transport and its action as an antioxidant take into consideration PrPc's Cu-binding capacity. There are also more published data supporting these two functions. There is strong evidence that during the course of prion disease, there is a loss of function of the prion protein. This manifests as a change in metal balance in the brain and other organs and substantial oxidative damage throughout the brain. Thus prions and metals have become tightly linked in the quest to understand the nature of transmissible spongiform encephalopathies.


2001 ◽  
Vol 13 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Tomas Gonzalez-Hernandez ◽  
Pedro Barroso-Chinea ◽  
Abraham Acevedo ◽  
Eduardo Salido ◽  
Manuel Rodriguez
Keyword(s):  

1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


Planta Medica ◽  
2008 ◽  
Vol 74 (03) ◽  
Author(s):  
Y Ye ◽  
LG Lin ◽  
H Xie ◽  
HL Li ◽  
HL Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document