scholarly journals An Improved Random Forest Algorithm for Class-Imbalanced Data Classification and its Application in PAD Risk Factors Analysis

2013 ◽  
Vol 7 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Dengju Yao ◽  
Jing Yang ◽  
Xiaojuan Zhan

The classification problem is one of the important research subjects in the field of machine learning. However, most machine learning algorithms train a classifier based on the assumption that the number of training examples of classes is almost equal. When a classifier was trained on imbalanced data, the performance of the classifier declined clearly. For resolving the class-imbalanced problem, an improved random forest algorithm was proposed based on sampling with replacement. We extracted multiple example subsets randomly with replacement from majority class, and the example number of extracted example subsets is as the same with minority class example dataset. Then, multiple new training datasets were constructed by combining the each exacted majority example subset and minority class dataset respectively, and multiple random forest classifiers were training on these training dataset. For a prediction example, the class was determined by majority voting of multiple random forest classifiers. The experimental results on five groups UCI datasets and a real clinical dataset show that the proposed method could deal with the class-imbalanced data problem and the improved random forest algorithm outperformed original random forest and other methods in literatures.

2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Andrea Sulova ◽  
Jamal Jokar Arsanjani

Recent studies have suggested that due to climate change, the number of wildfires across the globe have been increasing and continue to grow even more. The recent massive wildfires, which hit Australia during the 2019–2020 summer season, raised questions to what extent the risk of wildfires can be linked to various climate, environmental, topographical, and social factors and how to predict fire occurrences to take preventive measures. Hence, the main objective of this study was to develop an automatized and cloud-based workflow for generating a training dataset of fire events at a continental level using freely available remote sensing data with a reasonable computational expense for injecting into machine learning models. As a result, a data-driven model was set up in Google Earth Engine platform, which is publicly accessible and open for further adjustments. The training dataset was applied to different machine learning algorithms, i.e., Random Forest, Naïve Bayes, and Classification and Regression Tree. The findings show that Random Forest outperformed other algorithms and hence it was used further to explore the driving factors using variable importance analysis. The study indicates the probability of fire occurrences across Australia as well as identifies the potential driving factors of Australian wildfires for the 2019–2020 summer season. The methodical approach and achieved results and drawn conclusions can be of great importance to policymakers, environmentalists, and climate change researchers, among others.


2019 ◽  
Vol 20 (S2) ◽  
Author(s):  
Varun Khanna ◽  
Lei Li ◽  
Johnson Fung ◽  
Shoba Ranganathan ◽  
Nikolai Petrovsky

Abstract Background Toll-like receptor 9 is a key innate immune receptor involved in detecting infectious diseases and cancer. TLR9 activates the innate immune system following the recognition of single-stranded DNA oligonucleotides (ODN) containing unmethylated cytosine-guanine (CpG) motifs. Due to the considerable number of rotatable bonds in ODNs, high-throughput in silico screening for potential TLR9 activity via traditional structure-based virtual screening approaches of CpG ODNs is challenging. In the current study, we present a machine learning based method for predicting novel mouse TLR9 (mTLR9) agonists based on features including count and position of motifs, the distance between the motifs and graphically derived features such as the radius of gyration and moment of Inertia. We employed an in-house experimentally validated dataset of 396 single-stranded synthetic ODNs, to compare the results of five machine learning algorithms. Since the dataset was highly imbalanced, we used an ensemble learning approach based on repeated random down-sampling. Results Using in-house experimental TLR9 activity data we found that random forest algorithm outperformed other algorithms for our dataset for TLR9 activity prediction. Therefore, we developed a cross-validated ensemble classifier of 20 random forest models. The average Matthews correlation coefficient and balanced accuracy of our ensemble classifier in test samples was 0.61 and 80.0%, respectively, with the maximum balanced accuracy and Matthews correlation coefficient of 87.0% and 0.75, respectively. We confirmed common sequence motifs including ‘CC’, ‘GG’,‘AG’, ‘CCCG’ and ‘CGGC’ were overrepresented in mTLR9 agonists. Predictions on 6000 randomly generated ODNs were ranked and the top 100 ODNs were synthesized and experimentally tested for activity in a mTLR9 reporter cell assay, with 91 of the 100 selected ODNs showing high activity, confirming the accuracy of the model in predicting mTLR9 activity. Conclusion We combined repeated random down-sampling with random forest to overcome the class imbalance problem and achieved promising results. Overall, we showed that the random forest algorithm outperformed other machine learning algorithms including support vector machines, shrinkage discriminant analysis, gradient boosting machine and neural networks. Due to its predictive performance and simplicity, the random forest technique is a useful method for prediction of mTLR9 ODN agonists.


2021 ◽  
Vol 8 ◽  
Author(s):  
Guan Wang ◽  
Yanbo Zhang ◽  
Sijin Li ◽  
Jun Zhang ◽  
Dongkui Jiang ◽  
...  

Objective: Preeclampsia affects 2–8% of women and doubles the risk of cardiovascular disease in women after preeclampsia. This study aimed to develop a model based on machine learning to predict postpartum cardiovascular risk in preeclamptic women.Methods: Collecting demographic characteristics and clinical serum markers associated with preeclampsia during pregnancy of 907 preeclamptic women retrospectively, we predicted the cardiovascular risk (ischemic heart disease, ischemic cerebrovascular disease, peripheral vascular disease, chronic kidney disease, metabolic system disease or arterial hypertension). The study samples were divided into training sets and test sets randomly in the ratio of 8:2. The prediction model was developed by 5 different machine learning algorithms, including Random Forest. 10-fold cross-validation was performed on the training set, and the performance of the model was evaluated on the test set.Results: Cardiovascular disease risk occurred in 186 (20.5%) of these women. By weighing area under the curve (AUC), the Random Forest algorithm presented the best performance (AUC = 0.711[95%CI: 0.697–0.726]) and was adopted in the feature selection and the establishment of the prediction model. The most important variables in Random Forest algorithm included the systolic blood pressure, Urea nitrogen, neutrophil count, glucose, and D-Dimer. Random Forest algorithm was well calibrated (Brier score = 0.133) in the test group, and obtained the highest net benefit in the decision curve analysis.Conclusion: Based on the general situation of patients and clinical variables, a new machine learning algorithm was developed and verified for the individualized prediction of cardiovascular risk in post-preeclamptic women.


2021 ◽  
Vol 38 (9) ◽  
pp. A5.3-A6
Author(s):  
Thilo Reich ◽  
Adam Bancroft ◽  
Marcin Budka

BackgroundThe recording practices, of electronic patient records for ambulance crews, are continuously developing. South Central Ambulance Service (SCAS) adapted the common AVPU-scale (Alert, Voice, Pain, Unresponsive) in 2019 to include an option for ‘New Confusion’. Progressing to this new AVCPU-scale made comparisons with older data impossible. We demonstrate a method to retrospectively classify patients into the alertness levels most influenced by this update.MethodsSCAS provided ~1.6 million Electronic Patient Records, including vital signs, demographics, and presenting complaint free-text, these were split into training, validation, and testing datasets (80%, 10%, 10% respectively), and under sampled to the minority class. These data were used to train and validate predictions of the classes most affected by the modification of the scale (Alert, New Confusion, Voice).A transfer-learning natural language processing (NLP) classifier was used, using a language model described by Smerity et al. (2017) to classify the presenting complaint free-text.A second approach used vital signs, demographics, conveyance, and assessments (30 metrics) for classification. Categorical data were binary encoded and continuous variables were normalised. 20 machine learning algorithms were empirically tested and the best 3 combined into a voting ensemble combining three vital-sign based algorithms (Random Forest, Extra Tree Classifier, Decision Tree) with the NLP classifier using a Random Forest output layer.ResultsThe ensemble method resulted in a weighted F1 of 0.78 for the test set. The sensitivities/specificities for each of the classes are: 84%/ 90% (Alert), 73%/ 89% (Newly Confused) and 68%/ 93% (Voice).ConclusionsThe ensemble combining free text and vital signs resulted in high sensitivity and specificity when reclassifying the alertness levels of prehospital patients. This study demonstrates the capabilities of machine learning classifiers to recover missing data, allowing the comparison of data collected with different recording standards.


Author(s):  
Haseeb Ali ◽  
Mohd Najib Mohd Salleh ◽  
Rohmat Saedudin ◽  
Kashif Hussain ◽  
Muhammad Faheem Mushtaq

<span>The imbalanced data problems in data mining are common nowadays, which occur due to skewed nature of data. These problems impact the classification process negatively in machine learning process. In such problems, classes have different ratios of specimens in which a large number of specimens belong to one class and the other class has fewer specimens that is usually an essential class, but unfortunately misclassified by many classifiers. So far, significant research is performed to address the imbalanced data problems by implementing different techniques and approaches. In this research, a comprehensive survey is performed to identify the challenges of handling imbalanced class problems during classification process using machine learning algorithms. We discuss the issues of classifiers which endorse bias for majority class and ignore the minority class. Furthermore, the viable solutions and potential future directions are provided to handle the problems<em>.</em></span>


Author(s):  
Mohammad Almseidin ◽  
AlMaha Abu Zuraiq ◽  
Mouhammd Al-kasassbeh ◽  
Nidal Alnidami

With increasing technology developments, the Internet has become everywhere and accessible by everyone. There are a considerable number of web-pages with different benefits. Despite this enormous number, not all of these sites are legitimate. There are so-called phishing sites that deceive users into serving their interests. This paper dealt with this problem using machine learning algorithms in addition to employing a novel dataset that related to phishing detection, which contains 5000 legitimate web-pages and 5000 phishing ones. In order to obtain the best results, various machine learning algorithms were tested. Then J48, Random forest, and Multilayer perceptron were chosen. Different feature selection tools were employed to the dataset in order to improve the efficiency of the models. The best result of the experiment achieved by utilizing 20 features out of 48 features and applying it to Random forest algorithm. The accuracy was 98.11%.


2020 ◽  
Vol 23 (4) ◽  
pp. 304-312
Author(s):  
ShaoPeng Wang ◽  
JiaRui Li ◽  
Xijun Sun ◽  
Yu-Hang Zhang ◽  
Tao Huang ◽  
...  

Background: As a newly uncovered post-translational modification on the ε-amino group of lysine residue, protein malonylation was found to be involved in metabolic pathways and certain diseases. Apart from experimental approaches, several computational methods based on machine learning algorithms were recently proposed to predict malonylation sites. However, previous methods failed to address imbalanced data sizes between positive and negative samples. Objective: In this study, we identified the significant features of malonylation sites in a novel computational method which applied machine learning algorithms and balanced data sizes by applying synthetic minority over-sampling technique. Method: Four types of features, namely, amino acid (AA) composition, position-specific scoring matrix (PSSM), AA factor, and disorder were used to encode residues in protein segments. Then, a two-step feature selection procedure including maximum relevance minimum redundancy and incremental feature selection, together with random forest algorithm, was performed on the constructed hybrid feature vector. Results: An optimal classifier was built from the optimal feature subset, which featured an F1-measure of 0.356. Feature analysis was performed on several selected important features. Conclusion: Results showed that certain types of PSSM and disorder features may be closely associated with malonylation of lysine residues. Our study contributes to the development of computational approaches for predicting malonyllysine and provides insights into molecular mechanism of malonylation.


2020 ◽  
Vol 222 (2) ◽  
pp. 978-988
Author(s):  
Yury Meshalkin ◽  
Anuar Shakirov ◽  
Evgeniy Popov ◽  
Dmitry Koroteev ◽  
Irina Gurbatova

SUMMARY Rock thermal conductivity is an essential input parameter for enhanced oil recovery methods design and optimization and for basin and petroleum system modelling. Absence of any effective technique for direct in situ measurements of rock thermal conductivity makes the development of well-log based methods for rock thermal conductivity determination highly desirable. A major part of the existing problem solutions is regression model-based approaches. Literature review revealed that there are only several studies performed to assess the applicability of neural network-based algorithms to predict rock thermal conductivity from well-logging data. In this research, we aim to define the most effective machine-learning algorithms for well-log based determination of rock thermal conductivity. Well-logging data acquired at a heavy oil reservoir together with results of thermal logging on cores extracted from two wells were the basis for our research. Eight different regression models were developed and tested to predict vertical variations of rock conductivity from well-logging data. Additionally, rock thermal conductivity was determined based on Lichtenecker–Asaad model. Comparison study of regression-based and theoretical-based approaches was performed. Among considered machine learning techniques Random Forest algorithm was found to be the most accurate at well-log based determination of rock thermal conductivity. From a comparison of the thermal conductivity—depth profile predicted from well-logging data with the experimental data, and it can be concluded that thermal conductivity can be determined with a total relative error of 12.54 per cent. The obtained results prove that rock thermal conductivity can be inferred from well-logging data for wells that are drilled in a similar geological setting based on the Random Forest algorithm with an accuracy sufficient for industrial needs.


2019 ◽  
Vol 11 (24) ◽  
pp. 2925 ◽  
Author(s):  
Lucas Prado Osco ◽  
Ana Paula Marques Ramos ◽  
Danilo Roberto Pereira ◽  
Érika Akemi Saito Moriya ◽  
Nilton Nobuhiro Imai ◽  
...  

The traditional method of measuring nitrogen content in plants is a time-consuming and labor-intensive task. Spectral vegetation indices extracted from unmanned aerial vehicle (UAV) images and machine learning algorithms have been proved effective in assisting nutritional analysis in plants. Still, this analysis has not considered the combination of spectral indices and machine learning algorithms to predict nitrogen in tree-canopy structures. This paper proposes a new framework to infer the nitrogen content in citrus-tree at a canopy-level using spectral vegetation indices processed with the random forest algorithm. A total of 33 spectral indices were estimated from multispectral images acquired with a UAV-based sensor. Leaf samples were gathered from different planting-fields and the leaf nitrogen content (LNC) was measured in the laboratory, and later converted into the canopy nitrogen content (CNC). To evaluate the robustness of the proposed framework, we compared it with other machine learning algorithms. We used 33,600 citrus trees to evaluate the performance of the machine learning models. The random forest algorithm had higher performance in predicting CNC than all models tested, reaching an R2 of 0.90, MAE of 0.341 g·kg−1 and MSE of 0.307 g·kg−1. We demonstrated that our approach is able to reduce the need for chemical analysis of the leaf tissue and optimizes citrus orchard CNC monitoring.


Sign in / Sign up

Export Citation Format

Share Document