scholarly journals Exploratory Analysis of Driving Force of Wildfires in Australia: An Application of Machine Learning within Google Earth Engine

2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Andrea Sulova ◽  
Jamal Jokar Arsanjani

Recent studies have suggested that due to climate change, the number of wildfires across the globe have been increasing and continue to grow even more. The recent massive wildfires, which hit Australia during the 2019–2020 summer season, raised questions to what extent the risk of wildfires can be linked to various climate, environmental, topographical, and social factors and how to predict fire occurrences to take preventive measures. Hence, the main objective of this study was to develop an automatized and cloud-based workflow for generating a training dataset of fire events at a continental level using freely available remote sensing data with a reasonable computational expense for injecting into machine learning models. As a result, a data-driven model was set up in Google Earth Engine platform, which is publicly accessible and open for further adjustments. The training dataset was applied to different machine learning algorithms, i.e., Random Forest, Naïve Bayes, and Classification and Regression Tree. The findings show that Random Forest outperformed other algorithms and hence it was used further to explore the driving factors using variable importance analysis. The study indicates the probability of fire occurrences across Australia as well as identifies the potential driving factors of Australian wildfires for the 2019–2020 summer season. The methodical approach and achieved results and drawn conclusions can be of great importance to policymakers, environmentalists, and climate change researchers, among others.

2021 ◽  
pp. 161
Author(s):  
Royyannuur Kurniawan Endrayanto ◽  
Adharul Muttaqin

Pertanian merupakan salah satu sektor penting karena dapat memenuhi kebutuhan pangan sebagai kebutuhan pokok. Kebutuhan pangan masih menjadi salah satu isu hangat terlebih di masa pandemi COVID- 19 seperti saat ini. Pemenuhan kebutuhan pangan juga berkaitan erat dengan jumlah bahan pangan yang diproduksi oleh petani. Lingkungan merupakan salah satu faktor keberhasilan dalam kegiatan pertanian. Kondisi lingkungan Indonesia yang beragam seperti suhu dan tingkat presipitasi menyebabkan adanya perbedaan jenis tanaman pangan potensial setiap daerah di Indonesia. Oleh karena itu perlu upaya untuk mengoptimalkan produksi lahan pertanian berdasarkan faktor lingkungan di setiap daerah. Upaya ini diharapkan dapat membantu menjaga ketahanan pangan baik di masa pandemi dan pasca pandemi. Pada penelitian ini diperkenalkan pemanfaatan data geospasial untuk klasifikasi jenis tanaman pangan menggunakan algoritma machine learning sebagai upaya optimalisasi lahan pertanian. Data yang digunakan adalah Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS). Algoritma machine learning yang digunakan adalah algoritma klasifikasi Random Forest. Teknologi yang digunakan adalah Google Colab, Google Earth Engine dan Python. Tujuan dari penelitian ini adalah untuk mengklasifikasikan tanaman pangan yang memiliki potensi paling baik untuk ditanam di suatu daerah berdasarkan kondisi lingkungan yang ada.


2020 ◽  
Vol 12 (22) ◽  
pp. 3776
Author(s):  
Andrea Tassi ◽  
Marco Vizzari

Google Earth Engine (GEE) is a versatile cloud platform in which pixel-based (PB) and object-oriented (OO) Land Use–Land Cover (LULC) classification approaches can be implemented, thanks to the availability of the many state-of-art functions comprising various Machine Learning (ML) algorithms. OO approaches, including both object segmentation and object textural analysis, are still not common in the GEE environment, probably due to the difficulties existing in concatenating the proper functions, and in tuning the various parameters to overcome the GEE computational limits. In this context, this work is aimed at developing and testing an OO classification approach combining the Simple Non-Iterative Clustering (SNIC) algorithm to identify spatial clusters, the Gray-Level Co-occurrence Matrix (GLCM) to calculate cluster textural indices, and two ML algorithms (Random Forest (RF) or Support Vector Machine (SVM)) to perform the final classification. A Principal Components Analysis (PCA) is applied to the main seven GLCM indices to synthesize in one band the textural information used for the OO classification. The proposed approach is implemented in a user-friendly, freely available GEE code useful to perform the OO classification, tuning various parameters (e.g., choose the input bands, select the classification algorithm, test various segmentation scales) and compare it with a PB approach. The accuracy of OO and PB classifications can be assessed both visually and through two confusion matrices that can be used to calculate the relevant statistics (producer’s, user’s, overall accuracy (OA)). The proposed methodology was broadly tested in a 154 km2 study area, located in the Lake Trasimeno area (central Italy), using Landsat 8 (L8), Sentinel 2 (S2), and PlanetScope (PS) data. The area was selected considering its complex LULC mosaic mainly composed of artificial surfaces, annual and permanent crops, small lakes, and wooded areas. In the study area, the various tests produced interesting results on the different datasets (OA: PB RF (L8 = 72.7%, S2 = 82%, PS = 74.2), PB SVM (L8 = 79.1%, S2 = 80.2%, PS = 74.8%), OO RF (L8 = 64%, S2 = 89.3%, PS = 77.9), OO SVM (L8 = 70.4, S2 = 86.9%, PS = 73.9)). The broad code application demonstrated very good reliability of the whole process, even though the OO classification process resulted, sometimes, too demanding on higher resolution data, considering the available computational GEE resources.


2020 ◽  
Vol 3 (1) ◽  
pp. 481-498
Author(s):  
G. Sireesha Naidu ◽  
M. Pratik ◽  
S. Rehana

Abstract Catchment scale conceptual hydrological models apply calibration parameters entirely based on observed historical data in the climate change impact assessment. The study used the most advanced machine learning algorithms based on Ensemble Regression and Random Forest models to develop dynamically calibrated factors which can form as a basis for the analysis of hydrological responses under climate change. The Random Forest algorithm was identified as a robust method to model the calibration factors with limited data for training and testing with precipitation, evapotranspiration and uncalibrated runoff based on various performance measures. The developed model was further used to study the runoff response under climate change variability of precipitation and temperatures. A statistical downscaling model based on K-means clustering, Classification and Regression Trees and Support Vector Regression was used to develop the precipitation and temperature projections based on MIROC GCM outputs with the RCP 4.5 scenario. The proposed modelling framework has been demonstrated on a semi-arid river basin of peninsular India, Krishna River Basin (KRB). The basin outlet runoff was predicted to decrease (13.26%) for future scenarios under climate change due to an increase in temperature (0.6 °C), compared to a precipitation increase (13.12%), resulting in an overall reduction in water availability over KRB.


2013 ◽  
Vol 7 (1) ◽  
pp. 62-70 ◽  
Author(s):  
Dengju Yao ◽  
Jing Yang ◽  
Xiaojuan Zhan

The classification problem is one of the important research subjects in the field of machine learning. However, most machine learning algorithms train a classifier based on the assumption that the number of training examples of classes is almost equal. When a classifier was trained on imbalanced data, the performance of the classifier declined clearly. For resolving the class-imbalanced problem, an improved random forest algorithm was proposed based on sampling with replacement. We extracted multiple example subsets randomly with replacement from majority class, and the example number of extracted example subsets is as the same with minority class example dataset. Then, multiple new training datasets were constructed by combining the each exacted majority example subset and minority class dataset respectively, and multiple random forest classifiers were training on these training dataset. For a prediction example, the class was determined by majority voting of multiple random forest classifiers. The experimental results on five groups UCI datasets and a real clinical dataset show that the proposed method could deal with the class-imbalanced data problem and the improved random forest algorithm outperformed original random forest and other methods in literatures.


2020 ◽  
Vol 17 ◽  
pp. 100287 ◽  
Author(s):  
Nur Shafira Nisa Shaharum ◽  
Helmi Zulhaidi Mohd Shafri ◽  
Wan Azlina Wan Ab Karim Ghani ◽  
Sheila Samsatli ◽  
Mohammed Mustafa Abdulrahman Al-Habshi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document