scholarly journals Experimental Study on Shear Behavior of Mid-rise Assembled Monolithic Concrete Shear Walls with Varying Axial Compression Ratio

2017 ◽  
Vol 11 (1) ◽  
pp. 972-979
Author(s):  
Muhe Liu ◽  
Jiliang Liu ◽  
Guangming Qiu ◽  
Gang Wang ◽  
Mingjin Chu

Objective: Quasi-static tests of three mid-rise assembled monolithic concrete shear walls, whose aspect ratio is 2.0, were completed in this paper. The failure mode of three new-type shear walls and the effect of axial compression ratio were studied. Result and Conclusion: The result showed that the brittle failure was extinct, and the new-type shear walls had good deformability whose ductility factors were over 4.3. The axial compression ratio had significant influence on the mechanical properties of the new-type shear walls. As the increscent of the axial compression ratio, the shear capacity and initial stiffness were improved, but the energy-dissipating capacity became worst.

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Dafu Cao ◽  
Jiaqi Liu ◽  
Wenjie Ge ◽  
Rui Qian

In order to study the influence of the axial compression ratio and steel ratio on the shear-carrying capacity of steel-truss-reinforced beam-column joints, five shear failure interior joint specimens were designed. The effect of different coaxial pressure ratios (0.1, 0.2, and 0.3) and steel contents on the strain, ultimate bearing capacity, seismic performance, and failure pattern of cross-inclined ventral and chord bars in the joint core area was investigated. The experimental results show that the load-displacement hysteretic curves of all test specimens exhibit a bond-slip phenomenon. With the increase of the axial compression ratio, the ultimate bearing capacity of the joint core increases by 3.4% and 5.9%, respectively. While the ductility decreases by 10.3% and 13.1%, and the energy consumption capacity decreases by 3.2% and 5.8%, respectively. The shear capacity and ductility of the member with cross diagonal ventral steel angle in the joint core are increased by 12.9% and 13.4%, respectively. The shear capacity and ductility of the joint can be significantly improved by increasing the amount of steel in the core area. The expression of shear capacity suitable for this type of joint is obtained by fitting analysis, which can be used as a reference for engineering design.


2020 ◽  
pp. 136943322096372
Author(s):  
Xiuli Du ◽  
Min Wu ◽  
Hongtao Liu

In order to study the seismic performance of precast short-leg shear wall connected by grouting sleeves (PSSW), the three-dimensional numerical model was established by using the experiment of PSSW subjected to low cyclic loading. Based on good agreement between numerical results and experimental results, the numerical analysis models with different structural parameters of axial compression ratio and splicing position were designed in detail, and the effects of various parameters on the seismic performance of PSSW were analyzed. The results show that the PSSW exhibits wide and stable hysteresis loops, indicating a satisfactory hysteretic performance and an excellent energy consumption capacity. With the increase of the axial compression ratio, the shear capacity of horizontal splice seam is improved, but the ductility coefficient and total energy consumption decrease obviously. The most disadvantageous position of PSSW can be effectively avoided by changing the position of the post pouring seam. The bearing capacity of the specimens is basically stable, and the energy consumption increases significantly, so the post pouring seam of precast wall is recommended to be far away from the bottom section of the wall. In addition, the failure mechanism of different splicing positions was analyzed in detail.


2020 ◽  
pp. 136943322095683
Author(s):  
Bin Rong ◽  
Lei Wang ◽  
Ruoyu Zhang

This paper studied the shear behavior of the connections with external stiffening rings between square steel tubular columns and steel beams by experimental, numerical and analytical methods. Two connections with external stiffening rings were tested under low cyclic loading to investigate the effect of axial compression ratio on the shear behavior and capacity of the connection. The test result showed that the change of the axial compression ratio had little effect on the shear capacity of the connection while the ductility of the connection was decreasing with the increase of the axial compression ratio. Seven nonlinear finite element models were designed to investigate the seismic behavior of the connection under cyclic test. Parametric studies are carried out to study the influence of the following parameters on the shearing capacity and deformation in panel zone: the width and the height of the steel tube in panel zone and the thickness of the external stiffening rings. Finally, based on the model considering the post-buckling strength of the web of the steel tube in panel zone, a calculation formula was fitted by the results of the finite element simulation.


2021 ◽  
Vol 1020 ◽  
pp. 93-103
Author(s):  
Xi Kang Yan ◽  
Shun Zhang ◽  
Guo Liang Zhao ◽  
Xiao Chen ◽  
Bei Zhang

The construction joint is the weak part of the structure, and the P-δ effect is mostly ignored when considering the second-order effect, so it is necessary to study the influence of second-order effect on frame columns. Based on the above considerations, under different axial compression ratios, the mechanical properties of the construction joints of the frame columns with construction joints and the cast-in-situ frame columns were studied by low cycle repeated load testsand analyzed the influence of the second-order effect on the shear capacity of frame columns with joints. The test results indicate that the existence of construction joints reduces the shear-bearing capacity of the specimens, and the second-order effect has a greater impact on the columns with joints under the same axial compression ratio, and the shear capacity decreases more. With the increase of the axial compression ratio, the second-order effect will be weakened on the frame column with seam, but when the axial compression ratio exceeds a certain limit, the second-order effect will be increased.


2014 ◽  
Vol 578-579 ◽  
pp. 244-247
Author(s):  
Ya Feng Xu ◽  
Zhang Lin Zhai ◽  
Pi Yuan Xu

This article researches seismic performance of the joint of cellular steel column and steel beam through simulation of the finite element software. With the change of axial force, we can attain the load-displacement hysteretic curves, skeleton curves under the different axial compression ratio, and then analyze their bearing capacity, ductility, energy dissipation and other mechanical properties. Results show that, the decrease of axial compression ratio is helpful to improve the bearing capacity of specimens. The joints of cellular steel column and steel beam have full hysteretic curve, good ductility and seismic performance.


2011 ◽  
Vol 243-249 ◽  
pp. 980-984
Author(s):  
Xue Yi Fu ◽  
Jia Xin Qu

Both reference [1~2] method and partitioned design method (GB 50010-2002) were adopted to design complex shear walls, and some factors such as axial compression ratio, reinforcing ratio, section dimension, concrete strength grade and effective flange width were considered, then their limited loading capacity would be compared with each other when axial force was considered as a fixed value. It was found that there were some defects of complex shear wall partitioned design method. And its applied conditions were suggested, which included section restricted condition and limited value of axial compression ratio. When these conditions couldn’t be satisfied, the adjusted reinforcement partitioned design method of reference [3] was suggested. If the uneconomical problem of partitioned design method could not be accepted, whole section design method of reference [1~2] would be suggested.


2014 ◽  
Vol 670-671 ◽  
pp. 344-348 ◽  
Author(s):  
Wen Feng Chen ◽  
Xiao Hui Yuan ◽  
Bin Li

Three model specimens of alkali-activated slag concrete filled steel tube (AAS-CFST) with different axial compression ratio and steel ratio were designed and tested in the present study. The seismic performance of the structures were evaluated by testing them with combined lateral constant compression and vertical cyclic loads. The structural performance, such as the testing observations, hysteretic behavior, skeleton curve, stiffness degradation, energy dissipation capacity and ductility performance was discussed in detailed. The results show that all the specimens’ damage were bending deformation mode, and the hysteretic curves are relatively smooth. Test data indicated that increased the axial compression ratio improved the load bearing capacity, initial stiffness.


2018 ◽  
Vol 22 (3) ◽  
pp. 656-669 ◽  
Author(s):  
Hetao Hou ◽  
Weiqi Fu ◽  
Canxing Qiu ◽  
Jirun Cheng ◽  
Zhe Qu ◽  
...  

This study proposes a new type of shear wall, namely, the concrete-filled steel tube composite shear wall, for high performance seismic force resisting structures. In order to study the seismic behavior of concrete-filled steel tube composite shear wall, cyclic loading tests were conducted on three full-scale specimens. One conventional reinforced concrete shear wall was included in the testing program for comparison purpose. Regarding the seismic performance of the shear walls, the failure mode, deformation capacity, bearing capacity, ductility, hysteretic characteristics, and energy dissipation are key parameters in the analysis procedure. The testing results indicated that the bearing capacity, the ductility, and the energy dissipation of the concrete-filled steel tube composite shear walls are greater than that of conventional reinforced concrete shear walls. In addition, the influence of axial compression ratio on the seismic behavior of concrete-filled steel tube composite shear wall is also investigated. It was found that higher axial compression ratio leads to an increase in the bearing capacity of concrete-filled steel tube composite shear walls while a reduction in the ductility capacity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xu Wentao ◽  
Yang Chengyu

This paper aims to study the seismic performance of multiple composite core column joints. The influence of the stress mechanism, axial compression ratio, and shear span ratio on the failure mode, hysteretic performance, and shear capacity of the multiple composite core column joints was studied through the low-reversed cyclic loading tests of three specially designed and manufactured multiple composite core column joints. The angle ratio method is used to calculate the effective area of the vertical tie bar, and based on the mechanism of the softening tension-compression bar, the formula for calculating the shear capacity of the joint with multiple composite core column is established. In addition, it is also verified by the test data in this paper. The experimental results show that when the axial compression ratio increases from 0.26 to 0.45, the number and width of cracks at the beam end decrease. When the shear span ratio increases from 1.67 to 2.22, the number and width of cracks at the joint beam end increase. The average value and standard deviation of the ratio between the measured value and the calculated value of the shear capacity are 0.97 and 0.16, indicating that the proposed calculation method has a high agreement with the actual value and strong engineering application.


Sign in / Sign up

Export Citation Format

Share Document