scholarly journals Laboratory Tests on Hydraulic Lime Mortar Reinforced With Jute Fibres

2020 ◽  
Vol 14 (1) ◽  
pp. 152-162
Author(s):  
Antonio Formisano ◽  
Giovanni Chiumiento ◽  
Enzo J. Dessì

Background: Considering the high seismic vulnerability of masonry buildings located in the Italian territory, the implementation of seismic retrofit programs is strongly needed.. With consideration for sustainable interventions, it is evident that the retrofit techniques to protect the historical heritage should be carried out with innovative green compound materials, such as mortars reinforced with natural fibres. Objective: In the current paper, laboratory tests on lime mortars strengthened with raw jute fibres have been performed. Methods: The workability of the fibre-reinforced mixture has been assessed through shaking table tests, and the mechanical resistances of standard specimens have been evaluated by bending and compression tests. Results: Considering the hygroscopic nature of jute, it has been identified that the optimal water/lime ratio and the maximum water percentage are absorbed by jute fibres. From the results, how the spreading of the mixture, which is indicative of the mortar consistency, changes with the water/lime ratio, has been evaluated. From bending tests, the effective behaviour of fibres, which provide a stitching effect of the failure crack in the investigated fibre-reinforced lime mortars, has been observed. Conclusion: Finally, the results of compression tests have shown that the examined fibre-reinforced mortars can be effectively used as building products according to the actual Italian technical code NTC 2018.

2020 ◽  
Vol 70 (340) ◽  
pp. 229
Author(s):  
A. Bustos ◽  
E. Moreno ◽  
F. González ◽  
A. Cobo

In recent years, the use of hydraulic lime in conservation and restoration of historic buildings has increased due to the pathological processes involved in the use of Portland cement. This investigation deter­mines the properties of hydraulic lime mortars with added carbon fibers for their possible use in restoration of architectural heritage. The results obtained are compared with mortars to which glass and basalt fibers have been added. The results show that the fibers affect significantly the behaviour of the mortar. Although the fibers have a negative impact in the workability and increase the air void content, they improve significantly the mechanical strengths. Although no relevant differences have been found in the pre-cracking behaviour, it has been proven that the fibers avoid a fragile behaviour of the mortar, showing a better post-cracking behaviour. Mortars with carbon fibers are the ones that show the best performance, increasing the toughness up to 12080% over the reference mortars.


2017 ◽  
Vol 11 (1) ◽  
pp. 1026-1035 ◽  
Author(s):  
Ahmad Basshofi Habieb ◽  
Gabriele Milani ◽  
Tavio Tavio ◽  
Federico Milani

Introduction:An advanced Finite Element model is presented to examine the performance of a low-cost friction based-isolation system in reducing the seismic vulnerability of low-class rural housings. This study, which is mainly numerical, adopts as benchmark an experimental investigation on a single story masonry system eventually isolated at the base and tested on a shaking table in India.Methods:Four friction isolation interfaces, namely, marble-marble, marble-high-density polyethylene, marble-rubber sheet, and marble-geosynthetic were involved. Those interfaces differ for the friction coefficient, which was experimentally obtained through the aforementioned research. The FE model adopted here is based on a macroscopic approach for masonry, which is assumed as an isotropic material exhibiting damage and softening. The Concrete damage plasticity (CDP) model, that is available in standard package of ABAQUS finite element software, is used to determine the non-linear behavior of the house under non-linear dynamic excitation.Results and Conclusion:The results of FE analyses show that the utilization of friction isolation systems could much decrease the acceleration response at roof level, with a very good agreement with the experimental data. It is also found that systems with marble-marble and marble-geosynthetic interfaces reduce the roof acceleration up to 50% comparing to the system without isolation. Another interesting result is that there was little damage appearing in systems with frictional isolation during numerical simulations. Meanwhile, a severe state of damage was clearly visible for the system without isolation.


2018 ◽  
Vol 251 ◽  
pp. 02035
Author(s):  
Armen Ter-Martirosyan ◽  
Vitalii Sidorov ◽  
Lubov Ermoshina

At present, numerical methods of calculations, which are implemented in a large number of software complexes, are widely used in geotechnical practice and the definition of input parameters of the ground is very important and necessary to reflect the real work of the foundation of geotechnical structures [1-4]. There are often cases when the results obtained during laboratory tests of soils are not accepted by software complexes, errors are given, recommendations are proposed for changing the parameters in the direction of increasing or decreasing. In connection with these problems, the question arose about the need to optimize soil parameters obtained as a result of laboratory tests to compare and correct these parameters, based on the degree of approximation of model tests with laboratory tests [5]. Optimization of soil parameters can be carried out in the subroutine Soil test, incorporated in the PLAXIS geotechnical software [6]. Using the Soil test, the triaxial and compression tests are simulated based on the input parameters of the soil and the initial test data. The purpose of this study was to describe the methodology for optimizing the parameters of the Hardening Soil model and the Soft Soil Creep model using the PLAXIS 3D software geotechnical complex, as well as a comparative analysis of the results of laboratory soil tests with modeling results in software complex.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 584 ◽  
Author(s):  
Graciela Ponce-Antón ◽  
Anna Arizzi ◽  
Maria Zuluaga ◽  
Giuseppe Cultrone ◽  
Luis Ortega ◽  
...  

Archaeological lime mortars from the Tower Keep and West perimeter wall of Irulegi Castle (Navarre, Spain) were analysed to determine susceptibility to deterioration. Chemical, mineralogical, textural and physical characterisation was performed by different tests and multianalysis techniques in order to determine the intrinsic features of the original historical mortars at the castle. Samples from the Tower Keep are more prone to deteriorate compared with the West perimeter wall due to high water absorption capacity and high porosity. A high degree of pore interconnection, high desorption index and the presence of high pore volume in the 0.01 to 1 µm size range affect the mortar durability since pores retain water longer inside the mortar. Local environment conditions with persistent annual rainfall, high humidity and temperature variations contribute to the decay process of the original mortar. Characterisation of historical mortars not only allows better understanding of susceptibility to deterioration but also helps the design of compatible and durable repair mortar for future interventions on historical heritage. Compatibility of new materials with the historical mortar will be ensured by studying mortar characteristics and properties.


2017 ◽  
Vol 747 ◽  
pp. 542-549
Author(s):  
Marianovella Leone ◽  
Valeria Rizzo ◽  
Francesco Micelli ◽  
Maria Antonietta Aiello

External bonded reinforcements (EBR), made by fibrous meshes embedded in a cementitious/hydraulic lime mortar, are getting a great deal of attention, mostly for strengthening, retrofitting and repair existing structures. In this context, the interest versus the FRCM (Fiber Reinforced Cementitious Matrix) is growing. The mechanical performance of these mortar-based reinforcements is not well known at the date and it needs to be investigated in terms of bond and tensile strength, strain and stiffness, in relation to the type of both substrate and fibers. The present work reports the results of an experimental study, still in progress, on different pre-cured GFRP grids embedded in inorganic matrices and applied on clay brick masonry. First, the mechanical properties of both pre-cured GFRP grid and GFRCM reinforcements were obtained through tensile tests. Then, the experimental investigation on bond behavior was carried out by direct shear bond test. The test results were collected and processed to evaluate bond strength, failure mode, load-slip relationship.


2016 ◽  
Vol 711 ◽  
pp. 630-637
Author(s):  
Vivek Bindiganavile ◽  
Md Toihidul Islam ◽  
Narayana Suresh

Much of the existing water infrastructure across the world was constructed using masonry in the last 200 years and many of these structures were built with pre-Portland cement binders. Although these mortars exhibit good workability and high water retention in the plastic state, the water tightness deteriorates over the years resulting in a pressing need for suitable repair materials. The addition of polypropylene micorfibre in cement-based systems was found to be effective in reducing water permeability. But the effect of polymeric fibres on the permeability coefficient of hydraulic lime mortar (HLM) is unknown. Therefore, this paper focuses on measuring water permeability in fibre reinforced HLM. Besides, this study examined the application of nanolime onto the aforementioned mortars and its effect on their water permeability. Accordingly, a permeability cell was setup to monitor the onset of the steady state condition in fluid flow. Companion data was generated for the mechanical performance of these mortars. The results show that in hydraulic lime mortar, there is likely an optimal fibre dosage in order to reduce the permeability coefficient. Unlike with Portland cement mortar, this dosage is significantly lower. As well, applying nanolime was most beneficial in limiting water permeability in the natural hydraulic lime mortars.


2002 ◽  
Vol 712 ◽  
Author(s):  
Antonia Moropoulou ◽  
Asterios Bakolas ◽  
Petros Moundoulas ◽  
Eleni Aggelakopoulou ◽  
Sofia Anagnostopoulou

ABSTRACTCement based mortars used for historic masonry restoration presented unsatisfactory results, due to their chemical and physico-mechanical incompatibility to original buildings. In the present research, several syntheses of restoration mortars are produced using traditional techniques and materials such as binders (aerial and natural hydraulic lime), pozzolanicadditives (natural and artificial pozzolanas) and aggregates (sand and crushed brick). The technical characteristics of the mortars were determined using mechanical tests (compressive and flexural) and mercury intrusion porosimetry measurements at the time of 1, 3, 9, 15 months of curing. Water absorption measurements were performed at the time of 9 and 15 months curing, in order to evaluate mortars microstructural characteristics, their rate of water absorption and the total percentage of absorbed water. The aerial lime - artificial pozzolana mortar presented the best mechanical and microstructural performance. Hydraulic mortars acquired the maximum of the mechanical strength in 1 month, lime - pozzolana mortars in 3 months while aerial lime mortars continue to gain mechanical strength even in 15 months curing. Furthermore, the use of ceramic aggregates produces lightweight and elastic mortars, compatible to historicones.


2010 ◽  
Vol 133-134 ◽  
pp. 647-652 ◽  
Author(s):  
Nicola Mazzon ◽  
Cano M. Chavez ◽  
Maria Rosa Valluzzi ◽  
F. Casarin ◽  
Claudio Modena

The influence of the natural hydraulic lime-based grout on the dynamic behaviour of injected multi-leaf stone masonry elements is discussed in the paper. Shaking table experiments on two stone masonry buildings, tested before and after grout injection, have been performed. The paper focuses on the analysis of both the recorded accelerations and related displacements, at the bottom and at each further storey. This leads to evaluate the stiffness of the unstrengthened and injected structures. The input at increasing PGA allowed the stiffness decay to be studied, simulating a gradual damaging of the structures. These results were also interpreted in the light of both computed frequencies and mode shapes. Finally, the comparison among these results, obtained from all the models, allows to deepen the knowledge concerning the effects induced by the lime-based grout injection and on its capability to modify the dynamic behaviour, when intervening on a damaged (repairing) or on an undamaged (strengthening) structure.


Sign in / Sign up

Export Citation Format

Share Document