scholarly journals Conjoint Vehicle License Plate Identification System

2020 ◽  
Vol 14 (1) ◽  
pp. 164-173
Author(s):  
Yair Wiseman

Background: An autonomous vehicle will go unaccompanied to park itself in a remote parking lot without a driver or a passenger inside. Unlike traditional vehicles, an autonomous vehicle can drop passengers off near any location. Afterward, instead of cruising for a nearby free parking, the vehicle can be automatically parked in a remote parking lot which can be in a rural fringe of the city where inexpensive land is more readily available. Objective: The study aimed at avoidance of mistakes in the identification of the vehicle with the help of the automatic identification device. Methods: It is proposed to back up license plate identification procedure by making use of three distinct identification techniques: RFID, Bluetooth and OCR with the aim of considerably reducing identification mistakes. Results: The RFID is the most reliable identification device but the Bluetooth and the OCR can improve the reliability of RFID. Conclusion: A very high level of reliable vehicle identification device is achievable. Parking lots for autonomous vehicles can be very efficient and low-priced. The critical difficulty is to automatically make sure that the autonomous vehicle is correctly identified at the gate.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3850
Author(s):  
Bastien Vincke ◽  
Sergio Rodriguez Rodriguez Florez ◽  
Pascal Aubert

Emerging technologies in the context of Autonomous Vehicles (AV) have drastically evolved the industry’s qualification requirements. AVs incorporate complex perception and control systems. Teaching the associated skills that are necessary for the analysis of such systems becomes a very difficult process and existing solutions do not facilitate learning. In this study, our efforts are devoted to proposingan open-source scale model vehicle platform that is designed for teaching the fundamental concepts of autonomous vehicles technologies that are adapted to undergraduate and technical students. The proposed platform is as realistic as possible in order to present and address all of the fundamental concepts that are associated with AV. It includes all on-board components of a stand-alone system, including low and high level functions. Such functionalities are detailed and a proof of concept prototype is presented. A set of experiments is carried out, and the results obtained using this prototype validate the usability of the model for the analysis of time- and energy-constrained systems, as well as distributed embedded perception systems.


Author(s):  
Haoxiang Wang

In recent times Automation is emerging every day and bloomed in every sector. Intelligent Transportation System (ITS) is one of the important branches of Automation. The major constrain in the transportation system is traffic congestion. This slurps the individual’s time and consequently pollutes the environment. A centralized management is required for optimizing the transportation system. The current traffic condition is predicted by evaluating the historical data and thereby it reduces the traffic congestion. The periodic update of traffic condition in each and every street of the city is obtained and the data is transferred to the autonomous vehicle. These data are obtained from the simulation results of transportation prediction tool SUMO. It is proved that our proposed work reduces the traffic congestion and maintains ease traffic flow and preserves the fleet management.


Automation ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 17-32
Author(s):  
Thomas Kent ◽  
Anthony Pipe ◽  
Arthur Richards ◽  
Jim Hutchinson ◽  
Wolfgang Schuster

VENTURER was one of the first three UK government funded research and innovation projects on Connected Autonomous Vehicles (CAVs) and was conducted predominantly in the South West region of the country. A series of increasingly complex scenarios conducted in an urban setting were used to: (i) evaluate the technology created as a part of the project; (ii) systematically assess participant responses to CAVs and; (iii) inform the development of potential insurance models and legal frameworks. Developing this understanding contributed key steps towards facilitating the deployment of CAVs on UK roads. This paper aims to describe the VENTURER Project trials, their objectives and detail some of the key technologies used. Importantly we aim to introduce some informative challenges that were overcame and the subsequent project and technological lessons learned in a hope to help others plan and execute future CAV research. The project successfully integrated several technologies crucial to CAV development. These included, a Decision Making System using behaviour trees to make high level decisions; A pilot-control system to smoothly and comfortably turn plans into throttle and steering actuation; Sensing and perception systems to make sense of raw sensor data; Inter-CAV Wireless communication capable of demonstrating vehicle-to-vehicle communication of potential hazards. The closely coupled technology integration, testing and participant-focused trial schedule led to a greatly improved understanding of the engineering and societal barriers that CAV development faces. From a behavioural standpoint the importance of reliability and repeatability far outweighs a need for novel trajectories, while the sensor-to-perception capabilities are critical, the process of verification and validation is extremely time consuming. Additionally, the added capabilities that can be leveraged from inter-CAV communications shows the potential for improved road safety that could result. Importantly, to effectively conduct human factors experiments in the CAV sector under consistent and repeatable conditions, one needs to define a scripted and stable set of scenarios that uses reliable equipment and a controllable environmental setting. This requirement can often be at odds with making significant technology developments, and if both are part of a project’s goals then they may need to be separated from each other.


2019 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Ehsan Sabri Islam ◽  
Ayman Moawad ◽  
Namdoo Kim ◽  
Aymeric Rousseau

Transportation system simulation is a widely accepted approach to evaluate the impact of transport policy deployment. In developing a transportation system deployment model, the energy impact of the model is extremely valuable for sustainability and validation. It is expected that different penetration levels of Connected-Autonomous Vehicles (CAVs) will impact travel behavior due to changes in potential factors such as congestion, miles traveled, etc. Along with such impact analyses, it is also important to further quantify the regional energy impact of CAV deployment under different factors of interest. The objective of this paper is to study the energy consumption of electrified vehicles in the future for different penetration levels of CAVs deployment in the City of Chicago. The paper will further provide a statistical analysis of the results to evaluate the impact of the different penetration levels on the different electrified powertrains used in the study.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Helena Strömberg ◽  
Érika Martins Silva Ramos ◽  
MariAnne Karlsson ◽  
Mikael Johansson ◽  
Fredrick Ekman ◽  
...  

Abstract Aim This study identifies and compares perceptions of autonomous vehicle (AV) implementation among three Swedish stakeholder groups: Future Users, Urban Planners, and Developers. Method Semi-structured comparative focus groups were conducted separately with each of the three groups of stakeholders and the transcripts were analysed in broad themes using thematic analysis. Results Assumptions, hopes, concerns, and direction of development were the main themes that emerged from the analysis. Assumptions included electrification of vehicles, changes in travel demand, and the need for regulations; Hopes included the idea that AVs will contribute to a more accessible and safer transport system; Concerns included overtrust in AV technology, a possible detrimental impact on the city in the form of congestion and higher demand for investments in infrastructure that could outcompete other modes of transport; and Direction of development and their own role, where the need for collaboration between stakeholders and implementation of AVs in connection with society’s needs were emphasised. Conclusions AVs were seen to lead to both positive and negative consequences depending on implementation and the development of society. The study shows that dialogue between different stakeholders is lacking but it is desired for the inclusive implementation of AVs.


Webology ◽  
2021 ◽  
Vol 18 (05) ◽  
pp. 1176-1183
Author(s):  
Thylashri S ◽  
Manikandaprabu N ◽  
Jayakumar T ◽  
Vijayachitra S ◽  
Kiruthiga G

Pedestrians are essential objects in computer vision. Pedestrian detection in images or videos plays an important role in many applications such as real-time monitoring, counting pedestrians at various events, detecting falls of the elderly, etc. It is formulated as a problem of the automatic identification and location of pedestrians in pictures or videos. In real images, the art of pedestrian detection is an important task for major applications such as video surveillance, autonomous driving systems, etc. Pedestrian detection is also an important feature of the autonomous vehicle driving system because it identifies pedestrians and minimizes accidents between vehicles and pedestrians. The research trend in the field of vehicle electronics and driving safety, vision-based pedestrian recognition technologies for smart vehicles have established themselves loudly or slowing down the vehicle. In general, the visual pedestrian detection progression capable of be busted down into three consecutive steps: pedestrian detection, pedestrian recognition, and pedestrian tracking. There is also visual pedestrian recognition in the vehicle. Finally, we study the challenges and evolution of research in the future.


2020 ◽  
Vol 10 (16) ◽  
pp. 5655
Author(s):  
Miguel Ángel de Miguel ◽  
Francisco Miguel Moreno ◽  
Pablo Marín-Plaza ◽  
Abdulla Al-Kaff ◽  
Martín Palos ◽  
...  

This work presents a novel platform for autonomous vehicle technologies research for the insurance sector. The platform has been collaboratively developed by the insurance company MAPFRE-CESVIMAP, Universidad Carlos III de Madrid and INSIA of the Universidad Politécnica de Madrid. The high-level architecture and several autonomous vehicle technologies developed using the framework of this collaboration are introduced and described in this work. Computer vision technologies for environment perception, V2X communication capabilities, enhanced localization, human–machine interaction and self awareness are among the technologies which have been developed and tested. Some use cases that validate the technologies presented in the platform are also presented; these use cases include public demonstrations, tests of the technologies and international competitions for self-driving technologies.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Xinqiang Chen ◽  
Lei Qi ◽  
Yongsheng Yang ◽  
Qiang Luo ◽  
Octavian Postolache ◽  
...  

Video-based detection infrastructure is crucial for promoting connected and autonomous shipping (CAS) development, which provides critical on-site traffic data for maritime participants. Ship behavior analysis, one of the fundamental tasks for fulfilling smart video-based detection infrastructure, has become an active topic in the CAS community. Previous studies focused on ship behavior analysis by exploring spatial-temporal information from automatic identification system (AIS) data, and less attention was paid to maritime surveillance videos. To bridge the gap, we proposed an ensemble you only look once (YOLO) framework for ship behavior analysis. First, we employed the convolutional neural network in the YOLO model to extract multi-scaled ship features from the input ship images. Second, the proposed framework generated many bounding boxes (i.e., potential ship positions) based on the object confidence level. Third, we suppressed the background bounding box interferences, and determined ship detection results with intersection over union (IOU) criterion, and thus obtained ship positions in each ship image. Fourth, we analyzed spatial-temporal ship behavior in consecutive maritime images based on kinematic ship information. The experimental results have shown that ships are accurately detected (i.e., both of the average recall and precision rate were higher than 90%) and the historical ship behaviors are successfully recognized. The proposed framework can be adaptively deployed in the connected and autonomous vehicle detection system in the automated terminal for the purpose of exploring the coupled interactions between traffic flow variation and heterogeneous detection infrastructures, and thus enhance terminal traffic network capacity and safety.


Sign in / Sign up

Export Citation Format

Share Document