Effect of Nitric Oxide on Type I Collagen Expression in Cultured Stellate Cells

2008 ◽  
Vol 1 (1) ◽  
pp. 5-8
Author(s):  
Ghazaleh Aram ◽  
James J. Potter ◽  
Xiaopu Liu ◽  
Polina Sysa ◽  
Esteban Mezey
Development ◽  
1993 ◽  
Vol 117 (1) ◽  
pp. 245-251
Author(s):  
R. Quarto ◽  
B. Dozin ◽  
P. Bonaldo ◽  
R. Cancedda ◽  
A. Colombatti

Dedifferentiated chondrocytes cultured adherent to the substratum proliferate and synthesize large amounts of type I collagen but when transferred to suspension culture they decrease proliferation, resume the chondrogenic phenotype and the synthesis of type II collagen, and continue their maturation to hypertrophic chondrocyte (Castagnola et al., 1986, J. Cell Biol. 102, 2310–2317). In this report, we describe the developmentally regulated expression of type VI collagen in vitro in differentiating avian chondrocytes. Type VI collagen mRNA is barely detectable in dedifferentiated chondrocytes as long as the attachment to the substratum is maintained, but increases very rapidly upon passage of the cells into suspension culture reaching a peak after 48 hours and declining after 5–6 days of suspension culture. The first evidence of a rise in the mRNA steady-state levels is obtained already at 6 hours for the alpha 3(VI) chain. Immunoprecipitation of metabolically labeled cells with type VI collagen antibodies reveals that the early mRNA rise is paralleled by an increased secretion of type VI collagen in cell media. Induction of type VI collagen is not the consequence of trypsin treatment of dedifferentiated cells since exposure to the actin-disrupting drug cytochalasin or detachment of the cells by mechanical procedures has similar effects. In 13-day-old chicken embryo tibiae, where the full spectrum of the chondrogenic differentiation process is represented, expression of type VI collagen is restricted to the articular cartilage where chondrocytes developmental stage is comparable to stage I (high levels of type II collagen expression).(ABSTRACT TRUNCATED AT 250 WORDS)


Gene ◽  
2019 ◽  
Vol 685 ◽  
pp. 32-41 ◽  
Author(s):  
Er-meng Yu ◽  
Ling-ling Ma ◽  
Hong Ji ◽  
Zhi-fei Li ◽  
Guang-jun Wang ◽  
...  

2013 ◽  
Vol 56 (2) ◽  
pp. 73-79
Author(s):  
Lenka Bittnerová ◽  
Alena Jiroutová ◽  
Emil Rudolf ◽  
Martina Řezáčová ◽  
Jiří Kanta

Activated hepatic stellate cells (HSC) are a major source of fibrous proteins in cirrhotic liver. Inducing or accelerating their apoptosis is a potential way of liver fibrosis treatment. Extracellular matrix (ECM) surrounding cells in tissue affects their differentiation, migration, proliferation and function. Type I collagen is the main ECM component in fibrotic liver. We have examined how this protein modifies apoptosis of normal rat HSC induced by gliotoxin, cycloheximide and cytochalasin D in vitro and spontaneous apoptosis of HSC isolated from CCl4-damaged liver. We have found that type I collagen gel enhances HSC apoptosis regardless of the agent triggering this process.


1999 ◽  
Vol 277 (5) ◽  
pp. G1074-G1080 ◽  
Author(s):  
Jorge A. Gutierrez ◽  
Hilary A. Perr

Intestinal muscle undergoes stretch intermittently during peristalsis and persistently proximal to obstruction. The influence of this pervasive biomechanical force on developing smooth muscle cell function remains unknown. We adapted a novel in vitro system to study whether stretch modulates transforming growth factor-β1 (TGF-β1) and type I collagen protein and component α1 chain [α1(I) collagen] expression in fetal human intestinal smooth muscle cells. Primary confluent cells at 20-wk gestation, cultured on flexible silicone membranes, were subjected to two brief stretches or to 18 h tonic stretch. Nonstretched cultures served as controls. TGF-β1 protein was measured by ELISA and type I collagen protein was assayed by Western blot. TGF-β1 and α1(I) collagen mRNA abundance was determined by Northern blot analysis, quantitated by phosphorimaging, and normalized to 18S rRNA. Transcription was examined by nuclear run-on assay. Tonic stretch increased TGF-β1 protein 40%, type I collagen protein 100%, TGF-β1 mRNA content 2.16-fold, and α1(I) collagen mRNA 3.80-fold and enhanced transcription of TGF-β1 and α1(I) collagen by 3.1- and 4.25-fold, respectively. Brief stretch stimulated a 50% increase in TGF-β1 mRNA content but no change in α1(I) collagen. Neutralizing anti-TGF-β1 ablated stretch-mediated effects on α1(I) collagen. Therefore, stretch upregulates transcription for TGF-β1, which stimulates α1(I) collagen gene expression in smooth muscle from developing gut.


Sign in / Sign up

Export Citation Format

Share Document