Hybrid Forecasting Model Based Data Mining and Cuckoo Search: A Case Study of Wind Speed Time Series

2016 ◽  
Vol 9 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Xiangdong Xu ◽  
Xi Song ◽  
Qian Wang ◽  
Zhiyuan Liu ◽  
Jing Wang ◽  
...  

Wind energy has been part of the fastest growing renewable energy sources that is clean and pollution-free, which has been increasingly gaining global attention, and wind speed forecasting plays a vital role in the wind energy field, however, it has been proven to be a challenging task owing to the effect of various meteorological factors. This paper proposes a hybrid forecasting model, which can effectively make a preprocess for the original data and improve forecasting accuracy, the developed model applies cuckoo search(CS) algorithm to optimize the parameters of the wavelet neural network (WNN) model. The proposed hybrid method is subsequently examined on the wind farms of eastern China and the forecasting performance shows that the developed model is better than some traditional models.

2021 ◽  
pp. 0309524X2110197
Author(s):  
Rober Mamani ◽  
Patrick Hendrick

Wind energy is one of the most promising alternatives for a clean and ecological electricity generation. However, the implementation of efficient wind farms requires accurate data and measurements. This work analyses the MERRA-2 satellite datasets to compare and complement it with WRF simulations in different regions and altitudes in Bolivia, such as the Altiplano, Amazon and Chaco. A 41 years of hourly wind speed from MERRA-2 was used to analyze wind averages and characteristics over the year. WRF simulations for representative months were used to analyze wind shear and wind flows along Bolivia. The main results are related to wind speed index in different sites which varied between 0.90 and 1.09 and the periods of high wind speeds that is May—October in the Altiplano, and June—December in the Amazon and Chaco. However, the main findings are the differences between MERRA-2 data and WRF simulations that is linked to the topography of the sites in study.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3675 ◽  
Author(s):  
Ru Hou ◽  
Yi Yang ◽  
Qingcong Yuan ◽  
Yanhua Chen

Wind energy is crucial renewable and sustainable resource, which plays a major role in the energy mix in many countries around the world. Accurately forecasting the wind energy is not only important but also challenging in order to schedule the wind power generation and to ensure the security of wind-power integration. In this paper, four kinds of hybrid models based on cyclic exponential adjustment, adaptive coefficient methods and the cuckoo search algorithm are proposed to forecast the wind speed on large-scale wind farms in China. To verify the developed hybrid models’ effectiveness, wind-speed data from four sites of Xinjiang Uygur Autonomous Region located in northwest China are collected and analyzed. Multiple criteria are used to quantitatively evaluate the forecasting results. Simulation results indicate that (1) the proposed four hybrid models achieve desirable forecasting accuracy and outperform traditional back-propagating neural network, autoregressive integrated moving average as well as single adaptive coefficient methods, and (2) the parameters of hybrid models optimized by artificial intelligence contribute to higher forecasting accuracy compared with predetermined parameters.


Author(s):  
Bhargavi Munnaluri ◽  
K. Ganesh Reddy

Wind forecasting is one of the best efficient ways to deal with the challenges of wind power generation. Due to the depletion of fossil fuels renewable energy sources plays a major role for the generation of power. For future management and for future utilization of power, we need to predict the wind speed.  In this paper, an efficient hybrid forecasting approach with the combination of Support Vector Machine (SVM) and Artificial Neural Networks(ANN) are proposed to improve the quality of prediction of wind speed. Due to the different parameters of wind, it is difficult to find the accurate prediction value of the wind speed. The proposed hybrid model of forecasting is examined by taking the hourly wind speed of past years data by reducing the prediction error with the help of Mean Square Error by 0.019. The result obtained from the Artificial Neural Networks improves the forecasting quality.


2018 ◽  
Vol 8 (10) ◽  
pp. 1754 ◽  
Author(s):  
Tongxiang Liu ◽  
Shenzhong Liu ◽  
Jiani Heng ◽  
Yuyang Gao

Wind speed forecasting plays a crucial role in improving the efficiency of wind farms, and increases the competitive advantage of wind power in the global electricity market. Many forecasting models have been proposed, aiming to enhance the forecast performance. However, some traditional models used in our experiment have the drawback of ignoring the importance of data preprocessing and the necessity of parameter optimization, which often results in poor forecasting performance. Therefore, in order to achieve a more satisfying performance in forecasting wind speed data, a new short-term wind speed forecasting method which consists of Ensemble Empirical Mode Decomposition (EEMD) for data preprocessing, and the Support Vector Machine (SVM)—whose key parameters are optimized by the Cuckoo Search Algorithm (CSO)—is developed in this paper. This method avoids the shortcomings of some traditional models and effectively enhances the forecasting ability. To test the prediction ability of the proposed model, 10 min wind speed data from wind farms in Shandong Province, China, are used for conducting experiments. The experimental results indicate that the proposed model cannot only improve the forecasting accuracy, but can also be an effective tool in assisting the management of wind power plants.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Farzad Arefi ◽  
Jamal Moshtagh ◽  
Mohammad Moradi

In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms.


2020 ◽  
Vol 12 (14) ◽  
pp. 5761 ◽  
Author(s):  
Chakib El Mokhi ◽  
Adnane Addaim

Wind energy is currently one of the fastest-growing renewable energy sources in the world. For this reason, research on methods to render wind farms more energy efficient is reasonable. The optimization of wind turbine positions within wind farms makes the exploitation of wind energy more efficient and the wind farms more competitive with other energy resources. The investment costs alone for substation and electrical infrastructure for offshore wind farms run around 15–30% of the total investment costs of the project, which are considered high. Optimizing the substation location can reduce these costs, which also minimizes the overall cable length within the wind farm. In parallel, optimizing the cable routing can provide an additional benefit by finding the optimal grid network routing. In this article, the authors show the procedure on how to create an optimized wind farm already in the design phase using metaheuristic algorithms. Besides the optimization of wind turbine positions for more energy efficiency, the optimization methods of the substation location and the cable routing for the collector system to avoid cable losses are also presented.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 9 ◽  
Author(s):  
Rokas Tamašauskas ◽  
Jolanta Šadauskienė ◽  
Patrikas Bruzgevičius ◽  
Dorota Anna Krawczyk

In order to fulfil the European Energy Performance of Buildings Directive (EPBD) requirements regarding the reduction of energy consumption in buildings, much attention has been paid to primary energy consumption. Wind energy is one type of primary energy. The analysis of the literature has revealed that wind energy is evaluated by different methods. Therefore, the aim of this article was to calculate the effect of the parameters of wind sources on the primary energy factor of wind turbines. In order to achieve this aim, the primary energy factor of 100 investigated wind turbines and 11 wind farms operating in Lithuania was calculated. Investigation results showed that the difference of the non-renewable primary energy factor between wind turbines due to capacity is 35%. This paper provides a recommendation with regard to EU energy efficiency and renewable energy directives and regulations: All EU member states should use the same or very similar methodology for the calculation of the primary energy factor of renewable and non-renewable energy sources.


2020 ◽  
Author(s):  
Yang-Ming Fan

<p>The purpose of this study is to develop an ensemble-based data assimilation method to accurately predict wind speed in wind farm and provide it for the use of wind energy intelligent forecasting platform. As Taiwan government aimed to increase the share of renewable energy generation to 20% by 2025, among them, the uncertain wind energy output will cause electricity company has to reserve a considerable reserve capacity when dispatching power, and it is usually high cost natural gas power generation. In view of this, we will develop wind energy intelligent forecasting platform with an error of 10% within 72 hours and expect to save hundred millions of dollars of unnecessary natural gas generators investment. Once the wind energy can be predicted more accurately, the electricity company can fully utilize the robustness and economy of smart grid supply. Therefore, the mastery of the change of wind speed is one of the key factors that can reduce the minimum error of wind energy intelligent forecasting.</p><p>There are many uncertainties in the numerical meteorological models, including errors in the initial conditions or defects in the model, which may affect the accuracy of the prediction. Since the deterministic prediction cannot fully grasp the uncertainty in the prediction process, so it is difficult to obtain all possible wind field changes. The development of ensemble-based data assimilation prediction is to make up for the weakness of deterministic prediction. With the prediction of 20 wind fields as ensemble members, it is expected to include the uncertainty of prediction, quantify the uncertainty, and integrate the wind speed observations of wind farms as well to provide the optimal prediction of wind speed for the next 72 hours. The results show that the prediction error of wind speed within 72 hours is 6% under different weather conditions (excluding typhoons), which proves that the accuracy of wind speed prediction by combining data assimilation technology and ensemble approach is better.</p>


Sign in / Sign up

Export Citation Format

Share Document