Multiwall carbon nanotubes: A review on synthesis and applications

Author(s):  
Manisha Vijay Makwana ◽  
Ajay M Patel

: MWCNTs are elongated cylindrical nanoobjects made of sp2 carbon. They have a diameter of 3–30 nm and can grow to be several centimetres long. Therefore, their aspect ratio can range between 10 to 10 million. Carbon nanotubes are the foundation of nanotechnology. It is an exceptionally fascinating material. CNTs possess excellent properties such as mechanical, electrical, thermal, high adsorption, outstanding stiffness, high strength and low density with a high aspect ratio. These properties can be useful in the fabrication of revolutionary smart nano materials. Demand for lighter and more robust nano materials in different applications of nanotechnology is increasing every day. Various synthesis techniques for the fabrication of MWCNTs, such as CVD, Arc discharge, flame synthesis, laser ablation, and spray pyrolysis, are discussed in this review article, as are their recent applications in a variety of significant fields. The first section presents a brief introduction of CNTs, then the descriptions of synthesis methods and various applications of MWCNTs in the field of energy storage and conversion, biomedical, water treatment, drug delivery, biosensors, bucky papers and resonance-based biosensors are introduced in the second section. Due to their improved electrical, mechanical, and thermal properties, MWCNTs have been extensively used in the manufacturing and deployment of flexible sensors.

2018 ◽  
Author(s):  
Gen Hayase

By exploiting the dispersibility and rigidity of boehmite nanofibers (BNFs) with a high aspect ratio of 4 nm in diameter and several micrometers in length, multiwall-carbon nanotubes (MWCNTs) were successfully dispersed in aqueous solutions. In these sols, the MWCNTs were dispersed at a ratio of about 5–8% relative to BNFs. Self-standing BNF–nanotube films were also obtained by filtering these dispersions and showing their functionality. These films can be expected to be applied to sensing materials.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 23-28
Author(s):  
RAVI BHATIA ◽  
V. PRASAD ◽  
M. REGHU

High-quality multiwall carbon nanotubes (MWNTs) were produced by a simple one-step technique. The production of MWNTs was based on thermal decomposition of the mixture of a liquid phase organic compound and ferrocene. High degree of alignment was noticed by scanning electron microscopy. The aspect ratio of as-synthesized MWNTs was quite high (more than 4500). Transmission electron microscopy analysis showed the presence of the catalytic iron nanorods at various lengths of MWNTs. Raman spectroscopy was used to know the quality of MWNTs. The ratio of intensity of the G-peak to the D-peak was very high which revealed high quality of MWNTs. Magnetotransport studies were carried out at low temperature and a negative MR was noticed.


2001 ◽  
Vol 40 (Part 1, No. 5A) ◽  
pp. 3414-3418 ◽  
Author(s):  
Hirofumi Takikawa ◽  
Yoshitaka Tao ◽  
Ryuichi Miyano ◽  
Tateki Sakakibara ◽  
Xinluo Zhao ◽  
...  

2019 ◽  
Vol 54 (15) ◽  
pp. 1961-1976
Author(s):  
Xu Xiangmin ◽  
Hongxiang Zhang ◽  
Tong Beibei ◽  
Li Binjie ◽  
Yudong Zhang

The advanced multifunctional filler has become one of the main challenges in developing high-performance polymer composites. In this study, the acid-treated multiwall carbon nanotubes (MWCNTs) were adhered to the surface of milled glass fiber under the combined effect of 3-aminopropyltriethyloxy silane and tetraethyl orthosilicate to fabricate a hierarchical fiber (MWCNTs-MGF). The morphologies of the hierarchical fibers were characterized using field-emission scanning electron microscope and transmission electron microscope, which showed evidence of a coating layer of MWCNTs on each fiber surface. The MWCNTs-MGF was employed as a multifunctional filler to prepare polyoxymethylene-based composites using a twin-screw extruder by melt blending. The obtained composites exhibited improved mechanical and thermal properties. The composite tensile strength and notched impact strength and Young's modulus increased by 10%, 32%, and 32%, respectively, as the MWCNTs-MGF content varies from 0 to 10 wt.%. Meanwhile, the reinforcing and toughing mechanisms of MWCNTs-MGF were also elaborated by analyzing the interfacial adhesion and fracture morphologies of the composites. Moreover, the study on thermal stability and crystallization behavior indicated that the polyoxymethylene/MWCNTs-MGF composites had higher thermal stability, crystallization temperature, and crystallinity as compared to the polymer matrix. The improvement of thermal stability originates from the unique surface structure of MWCNTs-MGF, while the increase in crystallization temperature and crystallinity is due to the strong heterogeneous nucleation ability of the hierarchical fibers.


Carbon ◽  
2003 ◽  
Vol 41 (12) ◽  
pp. 2393-2401 ◽  
Author(s):  
Marco Vittori Antisari ◽  
Renzo Marazzi ◽  
Radenka Krsmanovic

e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarfraz H. Abbasi ◽  
Abdulhadi A. Al-Juhani ◽  
Anwar Ul-Hamid ◽  
Ibnelwaleed A. Hussein

AbstractIn this work, nanocomposites of low density polyethylene (LDPE) / multiwall carbon nanotubes (MWCNTs) were prepared using melt blending. The effects of CNT aspect ratio, CNT loading, CNT chemical modification and the presence of a compatibilizer (maleated polyethylene) on morphology, mechanical and thermal properties of the CNT/LDPE composites were studied. Different MWCNTs were used: long CNT (LCNT); COOH modified CNT (MCNT) and short CNT (SCNT). FE-SEM images of produced nanocomposites show agglomeration of the MWCNTs. Addition of compatibilizer to both LCNT and MCNT nanocomposites improved their dispersion in the LDPE matrix. Yield strength and modulus increased with loading of various MWCNTs. However, ultimate strength, percent elongation and toughness reduced significantly for CNT loadings of 2% CNT and higher. The addition of maleated PE resulted in improvements of Young’s modulus, yield strength and ultimate strength but no impact on elongation at break or toughness. Addition of compatibilizer did not affect the crystallinity of the produced nanocomposites. In general, the use of CNT with high aspect ratio and the addition of compatibilizer and chemical modification improved the dispersion of MWCNTs and consequently improved most of the mechanical properties except elongation at break and toughness.


2000 ◽  
Vol 633 ◽  
Author(s):  
A. Hassanien ◽  
A. Mrzel ◽  
M. Tokumoto ◽  
X. Zhao ◽  
Y. Ando ◽  
...  

AbstractWe report on the structural analysis of multiwall carbon nanotubes (MWNTs), produced by DC arc discharge in hydrogen gas, using a scanning tunneling microscope operated at ambient conditions. On a microscopic scale the images show tubes condensed in ropes as well as individual tubes which are separated from each other. Individual nanotubes exhibit various diameters (2.5-6 nm) and chiralities (0-30Å). For MWNTs rope, the outer portion is composed of highly oriented nanotubes with nearly uniform diameter (4-5 nm) and chirality. Strong correlation is found between the structural parameters and the electronic properties in which the MWNTs span the metallic-semiconductor regime. True atomic-resolution topographic STM images of the outer shell show hexagonal arrangements of carbon atoms that are unequally visible by STM tip. This suggests that the stacking nature of MWNTs, may effect the electronic band structure of the tube shells. Unlike other MWNTs produced by arc discharge in helium gas, the length of the tubes are rather short (80-500 nm), which make it feasible to use them as a components for molecular electronic devices.


2004 ◽  
Vol 858 ◽  
Author(s):  
Jitendra Menda ◽  
Lakshman Kumar Vanga ◽  
Benjamin Ulmen ◽  
Yoke Khin Yap ◽  
Zhengwei Pan ◽  
...  

ABSTRACTPlasma enhanced chemical vapor deposition (PECVD) is a unique technique for growing vertically-aligned multiwall carbon nanotubes (VA-MWNTs) at controllable tube densities. This technique is of considerable importance for low temperature growth of VA-MWNTs at desired locations. However, the graphitic order of these MWNTs is inferior to those grown by laser ablation, arc discharge, and thermal CVD techniques. Previously, these VA-MWNTs were grown by a one-plasma approach (DC, microwave etc), either for gas decomposition or substrate biasing. Here, we describe a dual-RF plasma enhanced CVD (dual-RF-PECVD) technique that offers unique capability for controlling the graphitic order and diameters of VA-MWNTs.


Sign in / Sign up

Export Citation Format

Share Document