Anticancer Evaluation and Docking Study of New Bifunctional Phthalazine Derivatives

2018 ◽  
Vol 15 (3) ◽  
pp. 414-422 ◽  
Author(s):  
Marwa G. El-Gazzar ◽  
Hala M. Aly

Aims and Objective: A series of novel phthalazine derivatives was synthesized with versatile, readily accessible electrophilic and nucleophilic reagents. The newly synthesized compounds were confirmed by the results of spectroscopic measurements. Hence, their potential clinical application investigated in particular for cancer treatment. Materials and Methods: The newly synthesized compounds were characterized by spectroscopic measurements and were tested for their in vitro anticancer activity by MTT assay against human liver cancer cell line. Docking study of all the synthesized compounds was performed within the active site of the enzyme VEGFR-2 (Vascular Endothelial Growth Factor Receptor-2). Results: The quinazoline derivative 12 emerged as the most potent compound in this study with an IC50 value of 5.4 µM. Docking study showed that the synthesized compounds were fit in the VEGFR-2 active site almost at the same position of sorafenib and vatalanib with comparable docking scores (-15.20 to -8.92 was kcal/mol). Conclusion: we have synthesized a novel series of phthalazine derivatives and evaluated their potential anticancer activity against HEPG2 cell line. The quinazoline derivative 12 emerged as the most potent compound in this study with an IC50 value of 5.4 µM. The SAR and docking studies pointed out that rigidification of the structure resulted in better activity and better binding within the active site of VEGFR-2 as in compounds 3, 5, 6 and 12. These results introduced new phthalazine derivatives having promising activity which could lead to the development of more potent anticancer agents.

2020 ◽  
Vol 19 (1) ◽  
pp. 25-28
Author(s):  
Suciati ◽  
Lusiana Arifianti

Marine sponges have been known as the source of natural products. Various metabolites with potent bioactivities have been reported from this organism. The current study aims to investigate the anticancer potency of three marine sponges namely Diacarnus debeauforti, Haliclona amboinensis and Agelas cavernosa collected from Barrang Lompo Island, South Sulawesi, Indonesia. The ethyl acetate extracts of the sponges were screened against T47D breast cancer cells and HeLa cervical cancer cells by using the MTT method. The results showed that these sponges demonstrated anticancer activity against both cancer cell lines. The lowest IC50 of 18.2 μg/ml was given by the extract of A. cavernosa against T47D cell line, while in the screening against HeLa cancer cell line, the extract of D. debeauforti revealed the highest potency with IC50 of 15.7 μg/ml. Our results suggested that the marine sponges namely D. debeauforti, H. amboinensis and A. cavernosa can be good candidates for the development of anticancer agents. Dhaka Univ. J. Pharm. Sci. 19(1): 25-28, 2020 (June)


2020 ◽  
Vol 3 (2) ◽  
pp. 33-40
Author(s):  
Linda Lusiantika ◽  
Esti Wahyu Widowati ◽  
Miranda Adihimawati

 A research to test the anticancer activity of in vitro anticancer activity against colon cancer cell line WiDr Ageratum conyzoides Linn.leafs. The aims of this study are to determine anticancer activity using MTT method. The method used is the extraction of secondary metabolites using maceration with n-hexane, ethyl acetate and ethanol, followed by TLC. Crude extract maceration results that have the highest yield selected and separated by fractions using KKV. Fractions with the greatest weight was chosen to be tested anticancer activity against WiDr cell line by MTT assay. Phytochemical screening and identification of compounds by GC-MS carried out on the fraction which has the lowest IC50 value. Maceration results showed that crude ethyl acetate extract had the highest amount of yield at 7.31% and has the best separation results of TLC is characterized by the highest number of stains. Separation by KKV produce 21 fractions, 4 fractions were selected based on the weight of the total of the fraction 6, 13, 14 and 15. Test anticancer activity with a concentration of 62.5; 125; 250; 500 and 1000 mg mL-1 shows the fraction 6 has the lowest IC50 value is 251.48 mg mL-1. Based on this, the fraction 6 does not have anticancer activity. Although, the phytochemical screening showed alkaloids and terpenoids as well as the result of identification with GC-MS indicated the presence of compounds 2H-benzopyran and neophytadiene Keywords: Ageratum conyzoides Linn. leaves, Column Cromatography Vacuum, anticancer, phytochemical, GC-MS


2019 ◽  
Vol 19 (4) ◽  
pp. 1081
Author(s):  
Artania Adnin Tri Suma ◽  
Tutik Dwi Wahyuningsih ◽  
Mustofa Mustofa

The synthesis of N-phenylpyrazolines 1-5 was performed by the cyclocondensation of phenylhydrazine and appropriate chalcones that have been synthesized from our previous work. All of the compounds were elucidated for their structure using GC-MS, FTIR, 1H, and 13C-NMR spectrometers. Their anticancer activity was evaluated against breast cancer cell line (T47D) and colorectal cancer cell line (WiDr). Compound 4 (4-(3-(4-chlorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-5-yl)-2-methoxyphenol) was found to be the most potent compound with IC50 value of 13.11 µg/mL in T47D cell line and 3.29 µg/mL in WiDr cell line. Docking study was conducted to evaluate the interaction between all compounds and EGFR receptor on cancer cells. Among the tested compounds, compound 4 is the only compound that has interaction with MET769 residue through hydrogen bonding due to the presence of hydroxyl group on its structure. Our findings suggest that the synthesized N-phenylpyrazolines in this study have a promising anticancer activity.


2020 ◽  
Vol 20 (18) ◽  
pp. 1929-1941
Author(s):  
Heba A. Elhady ◽  
Hossa F. Al-Shareef

Background and Objective: Due to the well-documented anti-proliferative activity of 2-thiohydantoin incorporated with pyrazole, oxadiazole, quinazoline, urea, β-naphthyl carbamate and Schiff bases, they are noteworthy in pharmaceutical chemistry. Methods: An efficient approach for the synthesis of a novel series of 2-thiohydantoin derivatives incorporated with pyrazole and oxadiazole has proceeded via the reaction of the acyl hydrazide with chalcones and/or triethyl orthoformate. Schiff bases were synthesized by the reaction of the acyl hydrazide with different aromatic aldehydes. Moreover, Curtius rearrangement was applied to the acyl azide to obtain the urea derivative, quinazoline derivative, and carbamate derivative. Results: The synthesized compounds structures were discussed and confirmed depending on their spectral data. The anticancer activity of these heterocyclic compounds was evaluated against the breast cancer cell line (MCF-7), where they showed variable activity. Compound 5d found to have a superior anticancer activity, where it has (IC50 = 2.07 ± 0.13 μg/mL) in comparison with the reference drug doxorubicin that has (IC50 = 2.79 ± 0.07 μg / mL). Then compound 5d subjected to further studies such as cell cycle analysis and apoptosis. Apoptosis was confirmed by the upregulation of Bax, downregulation of Bcl-2, and the increase of the caspase 3/7percentage. Conclusion: Insertion of pyrazole, oxadiazole and, quinazoline moieties with 2-thiohydantoin moiety led to the enhancement of its anti-proliferative activity. Hence they can be used as anticancer agents.


2020 ◽  
Vol 17 (2) ◽  
pp. 151-159
Author(s):  
Tran Nguyen Minh An ◽  
Pham Thai Phuong ◽  
Nguyen Minh Quang ◽  
Nguyen Van Son ◽  
Nguyen Van Cuong ◽  
...  

: A series of novel 1,3-thiazole derivatives (5a-i) with a modified phenothiazine moiety were synthesized and tested against cancer cell line MCF-7 for their cytotoxicity. Most of them (5a-i) were less cytotoxic or had no activity against MCF-7 cancer cell line. Material and Methods: The IC50 value of compound (4) was 33.84 μM. The compounds (5a-i) were also evaluated for antimicrobial activities, but no significant activity was observed. The antioxidant activity was conducted for target compounds (5a-i). The IC50 value of compound (5b) was 0.151mM. Results: The total amount of energy, ACE (atomic contact energy), energy of receptor (PDB: 5G5J), and ligand interaction of structure (4) were found to be 22.448 Kcal.mol-1 , -247.68, and -91.91 Kcal.mol-1, respectively. The structure (4) is well binded with the receptor because the values of binding energy, steric energy, and the number of hydrogen bondings are -91.91, 22.448 kcal.mol-1, and 2, respectively. It shows that structure (4) has good cytotoxicity with MCF-7 in vitro. Conclusion: The increasing of docking ability of structures (5a-i) with the receptor is presented in increasing order as (5f)>(5e)>(5g)>(5a)>(5b)>(5d)>(5c)>(5i)>(5h). The structure bearing substitution as thiosemicarbazone (4), nitrogen heterocyclic (5f), halogen (5e), and azide (5g) showed good cytotoxicity activity in vitro.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Vincenza Barresi ◽  
Carmela Bonaccorso ◽  
Domenico A. Cristaldi ◽  
Maria N. Modica ◽  
Nicolò Musso ◽  
...  

Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (02) ◽  
pp. 20-28
Author(s):  
P. K. N. Sarangi ◽  
◽  
J. Sahoo ◽  
S. K Paidesetty ◽  
G. P. Mohanta

A series of several diazenyl Schiff base derivatives were designed and synthesized through azo coupling of diazotised primary amines with the novel synthesized Schiff base ligand (E)-N-((2-chloroquinolin-3-yl) methylene)-4-phenylthiazol-2-amine. All the synthesized compounds have been analysed by different spectral techniques such as elemental analysis, 1H NMR, FT-IR, UV-Vis and LC-MS for their structural confirmation. The above conjugates have been studied for their solvent effects by treating them with different solvents. The results of in vitro cytotoxic study of the synthesized compounds against MCF 7 (human breast cancer cell line) and K562 (Chronic Myeloid Leukemia cell line) revealed that some of the compounds show cytotoxic effect. However, the compounds (NZ)-N-(((4-bromo-3-methylphenyl) diazenyl) (2-chloroquinolin-3-yl) methylene)-4-phenylthiazol-2-amine: (5d) and 4-(((Z)-(2-chloroquinolin-3- yl)(4-phenylthiazol-2-ylimino)methyl)diazenyl)phenol (5e) showed potent cytotoxic activity in comparison to other compounds against MCF 7. Corroborating the results of anticancer activity, it is found to be observed that the compound 4- (((Z)- (2-chloroquinolin-3-yl) (4-phenylthiazol-2-ylimino)methyl) diazenyl) phenol (5e) showed excellent anticancer activity against MCF 7, which is further justified by the apoptosis study through Annexin V-FITC/PI analysis.


Author(s):  
CHIDAMBARARAJAN P ◽  
KEERTHANA V ◽  
PRIYADHARSHINI K, ◽  
SAKTHIVEL B

Objective: The aim of the present investigation was to determine the in vitro antioxidant and anticancer activity of the ethanol extract of Ulva lactuca L. Methods: The present study was to investigate the antioxidant and anticancer activity of U. lactuca L. The extract of U. lactuca L. was extracted by ethanol and subject to analysis. An in vitro antioxidant activity of the ethanol extract of U. lactuca L. was performed by 1, 1-diphenyl-2-picrylhydrazyl free radical scavenging assay. Simultaneously anticancer activity was also performed using blood cancer (MOLT-3) cell line, and the species showed a strong selective cell proliferation inhibition of the cancer cell line. Results: The scavenging activity was measured and determined to be 78.5%. This might be due to high polyphenolic compounds and flavonoid contents of the extract, which showed maximum growth inhibition of 74.4%. Conclusion: Thus, the study concludes that the constituents of seaweeds can act as potent in treating various diseases and can be used as an alternative for therapeutic treatment.


Sign in / Sign up

Export Citation Format

Share Document