Nanoparticulate Mycophenolic Acid Eye Drops - Analytical Validation of a High Performance Liquid Chromatography Assay and Stability Studies

2021 ◽  
Vol 09 ◽  
Author(s):  
Ali Al-Kulabi ◽  
Louis Gooden ◽  
Ijeoma F. Uchegbu

Background: Mycophenolic acid (MPA), an immunosuppressive agent, is used orally to reduce corneal graft rejection. However its oral use is associated with gastrointestinal side effects. Objectives: To prepare MPA nanoparticle eye drops and a validated analytical method. Methods: Aqueous MPA eye drops were prepared by nanoencapsulation of MPA using Nanomerics MET (N-palamitoylN-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) at a MET, MPA ratio of 7.5: 1 g g-1 in the presence of glycerol (2.75% w/w). A validated MPA in-formulation drug substance assay was then developed. Results: MET-MPA formulations were prepared as well as a validated assay. Assay validation parameters for the analysis of MPA in the formulation were satisfactory [Plate count = 16458, Capacity Factor = 2.4, Tailing Factor = 1.02, linearity = 0.999 (0.016 – 0.5 mg mL-1 ), limit of detection = 0.056 mg mL-1 , limit of quantification = 0.17 mg mL-1 , accuracy = 98%, intraday and interday relative standard deviation = 0.45% and 4% respectively]. The candidate formulation (z - average mean = 66 ± 0.4 nm, polydispersity index = 0.12 ± 0.012, drug content = 1.14 ± 0.003 mg mL-1 , zeta potential = +8.5 ± 1.4 mV, pH = 7.4 ± 0.02, osmolarity = 309 ± 1.5 mOSm L-1 , viscosity = 1.04 ± 0.001 mPa.s) was then found to be stable for 14 days with respect to drug content at refrigeration, room and accelerated (40C )temperature and. All other formulation parameters were within the ocular comfort range. Conclusions: A validated assay (ICH and US FDA guidelines) for new MPA nanoparticle eye drops has been developed.

Author(s):  
Antonello Cicero ◽  
Francesco Giuseppe Galluzzo ◽  
Gaetano Cammilleri ◽  
Andrea Pulvirenti ◽  
Giuseppe Giangrosso ◽  
...  

We developed, validated, and confirmed with proficiency tests a fast ultra-high-performance liquid chromatography with diode array detector (UHPLC-DAD) method to determine histamine in fish and fishery products. The proposed method consists of two successive solid–liquid extractions: one with a dilute solution of perchloric acid (6%) and the second only with water. The instrumental analysis with UHPLC provides a very fast run time (only 6 min) with a retention time of approximately 4 min, a limit of quantification (LOQ) of 7.2 mg kg−1, a limit of detection (LOD) of 2.2 mg kg−1, a recovery around 100%, a relative standard deviation (RSD%) between 0.5 and 1.4, and an r2 of calibration curve equal to 0.9995. The method detected optimal values of the validation parameters and required a limited number of reagents in comparison to other methods reported in the literature. Furthermore, the method could detect histamine in a very short time compared with other methods. This method, in addition to being validated, precise, specific, and accurate, avoids wasting time, money, and resources, and limits the use of organic solvents.


2020 ◽  
pp. 1-8
Author(s):  
M. Pernica ◽  
J. Martiník ◽  
R. Boško ◽  
V. Zušťáková ◽  
K. Benešová ◽  
...  

The present study describes using molecularly imprinted polymer (MIP) technology for determination of patulin (PAT) and 5-hydroxymethylfurfural (5-HMF) in beverages by ultra-high performance liquid chromatography coupled to photodiode array (UPLC-PDA). PAT (4-hydroxy-4H-furo[3,2-c]pyran-2(6H)-one) is a mycotoxin produced by Penicillium fungi and Penicillium expansum is probably the most commonly encountered species that infects apples during their growth, harvest, storage or processing. The occurrence of PAT as a natural contaminant of apples is a worldwide problem. 5-HMF (also known as 5-(hydroxymethyl) furan-2-carbaldehyde), is formed in the Maillard reaction as well as during caramelisation. It is a good storage time-temperature marker and flavour indicator, especially in beverages such as wine, beer, but also cider and apple juice which may contain PAT. PAT and 5-HMF were separated within 2 min using a Luna Omega C18 column and the PDA detector wavelength was set to 276 nm. The validation parameters of the analytical method such as linearity, limit of detection, limit of quantification, accuracy and precision were tested. The calibration curves were linear at least in the range 50-1000 ng/ml with a good linearity (R2>0.999) for both analytes, the limit of detection and the limit of quantification for PAT and 5-HMF were in the range 4.9-6.6 and 16.1-21.8 μg/l, respectively. The recoveries of the selected analyte were in the range 61.9-109.0% with a precision of <8.2% (relative standard deviation (RSD)) for PAT and in the range 50.8-98.0% with a precision of <10.0% (RSD) for 5-HMF. The validated procedure was successfully applied for the analysis of PAT and 5-HMF in beverages from retail shops.


Author(s):  
Valmir Gomes De Souza ◽  
FabrÍcio Havy Dantas De Andrade ◽  
Fabio Santos De Souza ◽  
Rui Oliveira Macedo

Objective: The Anadenanthera colubrina (Vell.) Brennan var. cebil is a medicinal plant that has been used for the treatment of many diseases in the northeastern region of Brazil. This plant contains secondary metabolites such as quercetin, a flavonoid that is known by its antioxidant and anti-inflammatory effects. The aim of this work is to propose the validation of an analytical method using high-performance liquid chromatography with diode array detector (HPLC-DAD) for the quantification of quercetin and standardization of the hydroalcoholic extract (HAE) of A. colubrina.Methods: The A. colubrina extracts were prepared by the maceration process with powdered leaves at 20% weight: volume (w/v) and a hydroalcoholic solution at 50% volume: volume (v/v) for 120 h at room temperature. After pretreatment of the hydroalcoholic extract, the quercetin marker was used for quantification and proceeded to the evaluation of validation parameters for the method using HPLC-DAD.Results: The analytical method proved to be specific. Linear over the range 1.4–26.6 µg/ml, regression analysis showed a good correlation coefficient (R2= 0.999); the limit of detection (LOD) and the limit of quantification (LOQ) were 0.27 and 0.81 μg/ml respectively. The relative standard deviation (RSD) did not exceed 2.5% for precision. The proposed method was validated with an average recovery of 92.5–97.5%.Conclusion: The method was validated using HPLC-DAD, allowing the quantification of quercetin in the standardisation process of extracts and quality control of the herbal drug containing A. colubrina Phyto complex.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nadereh Rahbar ◽  
Fatemeh Ahmadi ◽  
Zahra Ramezani ◽  
Masoumeh Nourani

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO nanoparticles hydrogel fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear ranging between 0.1–500 µg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of detection (LOD) (S/N=3) and limit of quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 µg L−1. Within-day and between-day relative standard deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 59-65
Author(s):  
Vinita C. Patole ◽  
Shilpa P. Chaudhari ◽  

An attempt was made to develop a simple, selective, rapid and precise high-performance liquid chromatography (HPLC) method for simultaneous estimation of thymol and eugenol. Analysis was performed on a C18 column with the mobile phase consisting of solvent %A (water) and solvent %B (acetonitrile) with the following gradient: 0–1 min, 80 % A, 20 % B; 1–7 min, 40 % A and 60 % B; 7–12 min, 10 % A and 90 % B; and 12–15min, 80 % A and 20 % B at a flow rate of 0.6 mL/min. The compounds were well separated on a Thermo Scientific Hypersil BDS RP C18 column (4.6 mm × 150 mm, dp = 5 µm) and ultraviolet detection at 280 nm. The retention times of eugenol and thymol were 10.5 min and 11.6 min, respectively. Validation of the proposed method was carried out according to the guidelines of the International Council on Harmonization (ICH). The linearity of the method is good for thymol and eugenol over the concentration range of 1–50 ppm, and the r 2 values were 0.9996 for both thymol and eugenol. The calculated limit of detection (LOD) value was 0.5ppm and the limit of quantification (LOQ) value was 1ppm for both the analytes. The intra and interday relative standard deviation (RSD) of the retention time and peak areas was less than 3 %.The established method was appropriate, and the two markers were well resolved, enabling efficient quantitative analysis of thymol and eugenol.


2009 ◽  
Vol 92 (3) ◽  
pp. 757-764 ◽  
Author(s):  
Ellen Figueiredo Freire ◽  
Keyller Bastos Borges ◽  
Hélio Tanimoto ◽  
Raquel Tassara Nogueira ◽  
Lucimara Cristiane Toso Bertolini ◽  
...  

Abstract A simple method was optimized and validated for determination of ractopamine hydrochloride (RAC) in raw material and feed additives by HPLC for use in quality control in veterinary industries. The best-optimized conditions were a C8 column (250 4.6 mm id, 5.0 m particle size) at room temperature with acetonitrile100 mM sodium acetate buffer (pH 5.0; 75 + 25, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 275 nm. With these conditions, the retention time of RAC was around 5.2 min, and standard curves were linear in the concentration range of 160240 g/mL (correlation coefficient 0.999). Validation parameters, such as selectivity, linearity, limit of detection (ranged from 1.60 to 2.05 g/mL), limit of quantification (ranged from 4.26 to 6.84 g/mL), precision (relative standard deviation 1.87), accuracy (ranged from 96.97 to 100.54), and robustness, gave results within acceptable ranges. Therefore, the developed method can be successfully applied for the routine quality control analysis of raw material and feed additives.


Author(s):  
Heena Ar Shaikh ◽  
Vandana Jain

Objective: A simple, accurate, precise, robust reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the estimation of telmisartan and nebivolol hydrochloride (HCl) simultaneously in its combined dosage form.Methods: The compounds were well resolved in an isocratic method using the mobile phase composition of acetonitrile: Buffer (potassium dihydrogen orthophosphate pH adjusted 3.1 with orthophosphoric acid) in a ratio of 40:60 v/v at a flow rate of 1.2 ml/min using C18 Shim-pack (150 mm × 4.6 mm, 5 μ) column. The detection was carried out at 280 nm.Results: The retention time of telmisartan and nebivolol HCl was 4.8 min and 6.5 min, respectively. The developed method was validated by evaluating various validation parameters such as linearity, precision, accuracy, robustness, specificity, limit of detection, and limit of quantification according to the international council for harmonization guidelines. The standard calibration curve was obtained in the concentration range of 24–56 μg/ml for telmisartan and 3–7 μg/ml for nebivolol HCl. The overall average % recovery was found out to be 100.35 for telmisartan and 98.84 for nebivolol HCl.Conclusion: Statistical analysis of the data showed that the method is reproducible and selective for the estimation of telmisartan and nebivolol HCl. The proposed method could be used for analysis of telmisartan and nebivolol HCl in their dosage form.


2007 ◽  
Vol 90 (3) ◽  
pp. 720-724
Author(s):  
Sevgi Tatar Ulu

Abstract A sensitive and selective high-performance liquid chromatographic method has been developed for the determination of tianeptine (Tia) in tablets. The method is based on derivatization of Tia with 4-chloro-7-nitrobenzofurazan (NBD-Cl). A mobile phase consisting of acetonitrile10 mM orthophosphoric acid (pH 2.5; 77 + 23) was used at a flow rate of 1 mL/min on a C18 column. The Tia-NBD derivative was monitored using a fluorescence detector, with emission set at 520 nm and excitation at 458 nm. Gabapentin was selected as an internal standard. Linear calibration graphs were obtained in the concentration range of 45300 ng/mL. The lower limit of detection (LOD) was 10 ng/mL at a signal-to-noise ratio of 4. The lower limit of quantitation (LOQ) was 45 ng/mL. The relative standard values for intra- and interday precision were &lt;0.46 and &lt;0.57%, respectively. The recovery of the drug samples ranged between 98.89 and 99.85%. No chromatographic interference from the tablet excipients was found. The proposed method was validated in terms of precision, robustness, recovery, LOD, and LOQ. All the validation parameters were within the acceptance range. The proposed method was applied for the determination of Tia in commercially available tablets. The results were compared with those obtained by an ultraviolet spectrophotometric method using t- and F-tests.


Author(s):  
Kanan G Gamit ◽  
Niraj Y Vyas ◽  
Nishit D Patel ◽  
Manan A Raval

Objective: A study was aimed to estimate guggulsterone-Z (GZ) in Gokshuradi Guggulu (GG).Methods: An analytical method was developed and validated using Waters Alliance high-performance liquid chromatography system (Empower software), equipped with photodiode array detector. Separation was achieved using Phenomenex, C-18 (250 mm×4.6 mm, 5 μ) column. Mobile phase consisted of acetonitrile:water (70:30,v/v). Flow rate was set to 1 ml/min and detection was performed at 251 nm.Results and Discussion: Validation parameters such as linearity, precision, accuracy, limit of detection, limit of quantification, and robustness were performed. Amount of GZ was estimated using linearity equation.Conclusion: GG was found to contain 0.815±0.03 g% w/w GZ. Validated method may be used as one of the parameters to standardize the formulation.


Sign in / Sign up

Export Citation Format

Share Document