scholarly journals ANALYTICAL METHOD BY HPLC-DAD ALLOWS QUANTIFICATION OF QUERCETIN MARKER IN STANDARDIZED EXTRACT OF ANADENANTHERA COLUBRINA VAR. CEBIL

Author(s):  
Valmir Gomes De Souza ◽  
FabrÍcio Havy Dantas De Andrade ◽  
Fabio Santos De Souza ◽  
Rui Oliveira Macedo

Objective: The Anadenanthera colubrina (Vell.) Brennan var. cebil is a medicinal plant that has been used for the treatment of many diseases in the northeastern region of Brazil. This plant contains secondary metabolites such as quercetin, a flavonoid that is known by its antioxidant and anti-inflammatory effects. The aim of this work is to propose the validation of an analytical method using high-performance liquid chromatography with diode array detector (HPLC-DAD) for the quantification of quercetin and standardization of the hydroalcoholic extract (HAE) of A. colubrina.Methods: The A. colubrina extracts were prepared by the maceration process with powdered leaves at 20% weight: volume (w/v) and a hydroalcoholic solution at 50% volume: volume (v/v) for 120 h at room temperature. After pretreatment of the hydroalcoholic extract, the quercetin marker was used for quantification and proceeded to the evaluation of validation parameters for the method using HPLC-DAD.Results: The analytical method proved to be specific. Linear over the range 1.4–26.6 µg/ml, regression analysis showed a good correlation coefficient (R2= 0.999); the limit of detection (LOD) and the limit of quantification (LOQ) were 0.27 and 0.81 μg/ml respectively. The relative standard deviation (RSD) did not exceed 2.5% for precision. The proposed method was validated with an average recovery of 92.5–97.5%.Conclusion: The method was validated using HPLC-DAD, allowing the quantification of quercetin in the standardisation process of extracts and quality control of the herbal drug containing A. colubrina Phyto complex.

Author(s):  
Antonello Cicero ◽  
Francesco Giuseppe Galluzzo ◽  
Gaetano Cammilleri ◽  
Andrea Pulvirenti ◽  
Giuseppe Giangrosso ◽  
...  

We developed, validated, and confirmed with proficiency tests a fast ultra-high-performance liquid chromatography with diode array detector (UHPLC-DAD) method to determine histamine in fish and fishery products. The proposed method consists of two successive solid–liquid extractions: one with a dilute solution of perchloric acid (6%) and the second only with water. The instrumental analysis with UHPLC provides a very fast run time (only 6 min) with a retention time of approximately 4 min, a limit of quantification (LOQ) of 7.2 mg kg−1, a limit of detection (LOD) of 2.2 mg kg−1, a recovery around 100%, a relative standard deviation (RSD%) between 0.5 and 1.4, and an r2 of calibration curve equal to 0.9995. The method detected optimal values of the validation parameters and required a limited number of reagents in comparison to other methods reported in the literature. Furthermore, the method could detect histamine in a very short time compared with other methods. This method, in addition to being validated, precise, specific, and accurate, avoids wasting time, money, and resources, and limits the use of organic solvents.


2019 ◽  
Vol 30 (3) ◽  
pp. 38
Author(s):  
Lobaina M Alrhia ◽  
Issam Mohamad ◽  
Sameer Mearouf

The aim of this research is separation and determination of trace Tetracycline residues in Poultry chest, thigh and liver using High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD), with a mobile phase mixture consisting of acetonitrile: methanol: oxalic acid (0.01M) (25:15:60) and chromatographic column C8. The study was done on 32 live poultry individuals. All individuals were injected in the chest by 1m of Tetracycline standard solutions, then slaughter for analysis throughout four successive days. The injection with 10×103 ppb of Tetracycline showed that the traces of Tetracycline residues (according to the Codex Alimentarius Commission) exceeded the value of the maximum residue limit (MRL = 200 ppb) in the thigh and chest meat at the 1st day and the 1st & 2nd days of slay respectively, and exceeded the value of (MRL = 600 ppb) in the liver at the 3rd and 4th days of slay. limit of detection was LOD = 0.451 ppb, limit of quantification LOQ = 1.502 ppb, and recovery percentages of Tetracycline at a concentration of 200.0 ppb for 20 sample Rec.% = (88.966 - 91.055%), (84.623 - 87.667%), (82.198 - 83.688%) for Poultry chest, thigh and liver respectively with a percentage relative standard deviations (RSD%) of < 1 %.


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


2021 ◽  
Vol 09 ◽  
Author(s):  
Ali Al-Kulabi ◽  
Louis Gooden ◽  
Ijeoma F. Uchegbu

Background: Mycophenolic acid (MPA), an immunosuppressive agent, is used orally to reduce corneal graft rejection. However its oral use is associated with gastrointestinal side effects. Objectives: To prepare MPA nanoparticle eye drops and a validated analytical method. Methods: Aqueous MPA eye drops were prepared by nanoencapsulation of MPA using Nanomerics MET (N-palamitoylN-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) at a MET, MPA ratio of 7.5: 1 g g-1 in the presence of glycerol (2.75% w/w). A validated MPA in-formulation drug substance assay was then developed. Results: MET-MPA formulations were prepared as well as a validated assay. Assay validation parameters for the analysis of MPA in the formulation were satisfactory [Plate count = 16458, Capacity Factor = 2.4, Tailing Factor = 1.02, linearity = 0.999 (0.016 – 0.5 mg mL-1 ), limit of detection = 0.056 mg mL-1 , limit of quantification = 0.17 mg mL-1 , accuracy = 98%, intraday and interday relative standard deviation = 0.45% and 4% respectively]. The candidate formulation (z - average mean = 66 ± 0.4 nm, polydispersity index = 0.12 ± 0.012, drug content = 1.14 ± 0.003 mg mL-1 , zeta potential = +8.5 ± 1.4 mV, pH = 7.4 ± 0.02, osmolarity = 309 ± 1.5 mOSm L-1 , viscosity = 1.04 ± 0.001 mPa.s) was then found to be stable for 14 days with respect to drug content at refrigeration, room and accelerated (40C )temperature and. All other formulation parameters were within the ocular comfort range. Conclusions: A validated assay (ICH and US FDA guidelines) for new MPA nanoparticle eye drops has been developed.


Author(s):  
Kanan G Gamit ◽  
Niraj Y Vyas ◽  
Nishit D Patel ◽  
Manan A Raval

Objective: A study was aimed to estimate guggulsterone-Z (GZ) in Gokshuradi Guggulu (GG).Methods: An analytical method was developed and validated using Waters Alliance high-performance liquid chromatography system (Empower software), equipped with photodiode array detector. Separation was achieved using Phenomenex, C-18 (250 mm×4.6 mm, 5 μ) column. Mobile phase consisted of acetonitrile:water (70:30,v/v). Flow rate was set to 1 ml/min and detection was performed at 251 nm.Results and Discussion: Validation parameters such as linearity, precision, accuracy, limit of detection, limit of quantification, and robustness were performed. Amount of GZ was estimated using linearity equation.Conclusion: GG was found to contain 0.815±0.03 g% w/w GZ. Validated method may be used as one of the parameters to standardize the formulation.


Author(s):  
DAVID ALEXANDER ◽  
Abdul Rohman

Objective: The aim of this research was to validate inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for quantitative analysis of cadmium (Cd), chromium (Cr), cuprum (Cu), mangan (Mn) and nickel (Ni) in milk products. Methods: The heavy metals in milk were determined using ICP-AES at optimized wavelength. The method was validated by assessing several validation parameters which included linearity and range, accuracy, precision and sensitivity expressed by the limit of detection and limit of quantification. The validated method was then used for the analysis of milks commercially available. Results: ICP-AES for determination of Cd, Cr, Cu, Mn, and Ni was linear over a certain concentration range with a coefficient correlation value of>0.997. The limit of quantification values of Cd, Cr, Cu, Mn, and Ni were 0.0047; 0.0050; 0.0066; 0.0061; and 0.0169 µg/ml, respectively. The precision of analytical method exhibited relative standard deviation (RSD) values of 3.18%; 4.17%; 3.05%; 2.93%; and 4.47% during repeatability test and 5.28%; 5.06%; 3.67%; 3.67%; and 11.17% during intermediate precision of Cd, Cr, Cu, Mn, and Ni respectively. The recoveries of these metals assessed using standard addition method were 92.25; 90.88; 102.87; 94.50; and 86.85%, respectively. Conclusion: ICP-AES offered a reliable and fast method for the determination of heavy metals in milk products. The developed method could be proposed as an official method for determination of heavy metals in milk products.


2007 ◽  
Vol 70 (7) ◽  
pp. 1735-1738 ◽  
Author(s):  
DİREN BEYOĞLU ◽  
GÜLDEN Z. OMURTAG

This study is the first report on an investigation of the naphthalene concentration in samples of contaminated honey consumed in Turkey. Naphthalene was detected using high-performance liquid chromatography with a diode array detector at 220 nm. In one suspected contaminated specimen, the presence of naphthalene was confirmed by gas chromatography with mass spectrometry (GC-MS) at a concentration of 1.13 μg/kg. The limit of detection was 0.023 μg/g and the limit of quantification was 0.078 μg/g with signal-to-noise ratios of 3 and 10, respectively. A total of 100 samples of commercially available honey obtained from markets (53 samples) and street bazaars (47 samples) were analyzed. Mean naphthalene recovery from honey known to be contaminated with 1 μg/g was 80.4% (SD = 4.84%, n = 7).


Food Research ◽  
2020 ◽  
Vol 4 (6) ◽  
pp. 2037-2041
Author(s):  
A.D. Lestari ◽  
A. Rohman ◽  
S. Martono

This study was aimed to perform analytical method validation of high-performance liquid chromatography (HPLC) technique using photo-diode array detector for the simultaneous determination of Tartrazine (TAR) and Auramine O (AUO) in powder drink products. TAR and AUO were analysed using Waters Shield C18 column (250 mm x 4.6 mm i.d., 5 µm) using PDA detector at 300-650 nm. The mobile phase used was acetonitrileammonium acetate 19 mM (86:14 v/v) delivered isocratically at a flow rate of 1.2 mL/ min. The optimized HPLC condition was subjected to analytical method validation by assessing some performance characteristics as guided by International Conference on Harmonization (ICH). The method was linear over the studied concentration ranges with the coefficient of determination (R2 ) of 0.999 and 0.997 for TAR and AUR with % intercept less than 2%, respectively. The developed method was sensitive with a limit of detection value of 0.0325 μg/mL and 0.1052 μg/mL for TAR and AUO, respectively. The method is also accurate and precise as indicated with acceptable recovery values of 99.0- 100.7% for TAR and 102.1-106.5% for AUO with relative standard deviation (RSD) values lower than those required by Association of Official Analytical Chemists’ (AOAC). The developed method is simple and can be used for routine analysis of TAR and AUO for quality assurance purposes of powder drinks.


2021 ◽  
Vol 21 (5) ◽  
pp. 1196
Author(s):  
Ungku Amirul Arif Ungku Abdullah ◽  
Nor Suhaila Mohamad Hanapi ◽  
Wan Nazihah Wan Ibrahim ◽  
Nursyamsyila Mat Hadzir ◽  
Nurzaimah Zaini ◽  
...  

Existing methods used in tracing Tetracyclines' antibiotics (TCAs) residues which pose serious environmental problems, consume high amounts of organic solvents, are time-consuming, and are relatively expensive. A simple and effective magnetic solid-phase extraction (MSPE) based on reduced graphene oxide/magnetite (RGO/Fe3O4) nanocomposite sorbent was successfully developed for preconcentration and extraction of TCAs residues from water samples. The analytes were determined by high-performance liquid chromatography with a diode-array detector (HPLC-DAD). The synthesized nanocomposite was characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and field emission scanning electron microscopy (FESEM). Sample pH, amount of adsorbent, sample volume, extraction time, desorption time, and desorption solvent were evaluated and optimized. Under optimized conditions, the method demonstrated good linearity over the concentration range of 0.05–1.0 mg L–1 with the coefficient of determination (R2) ≥ 0.9978. Limit of detection (LOD) and limit of quantification (LOQ) were 0.006–0.011 mg L–1 and 0.019–0.036 mg L–1, respectively. The accuracy and precision of the developed method were proven by good analyte recovery (89.77–106.33%) and acceptable precision with relative standard deviation, RSD ≤ 5.54%. The results showed that magnetic solid RGO/Fe3O4 could be a suitable adsorbent in the preconcentration and extraction of TCAs in water samples.


2020 ◽  
pp. 1-8
Author(s):  
M. Pernica ◽  
J. Martiník ◽  
R. Boško ◽  
V. Zušťáková ◽  
K. Benešová ◽  
...  

The present study describes using molecularly imprinted polymer (MIP) technology for determination of patulin (PAT) and 5-hydroxymethylfurfural (5-HMF) in beverages by ultra-high performance liquid chromatography coupled to photodiode array (UPLC-PDA). PAT (4-hydroxy-4H-furo[3,2-c]pyran-2(6H)-one) is a mycotoxin produced by Penicillium fungi and Penicillium expansum is probably the most commonly encountered species that infects apples during their growth, harvest, storage or processing. The occurrence of PAT as a natural contaminant of apples is a worldwide problem. 5-HMF (also known as 5-(hydroxymethyl) furan-2-carbaldehyde), is formed in the Maillard reaction as well as during caramelisation. It is a good storage time-temperature marker and flavour indicator, especially in beverages such as wine, beer, but also cider and apple juice which may contain PAT. PAT and 5-HMF were separated within 2 min using a Luna Omega C18 column and the PDA detector wavelength was set to 276 nm. The validation parameters of the analytical method such as linearity, limit of detection, limit of quantification, accuracy and precision were tested. The calibration curves were linear at least in the range 50-1000 ng/ml with a good linearity (R2>0.999) for both analytes, the limit of detection and the limit of quantification for PAT and 5-HMF were in the range 4.9-6.6 and 16.1-21.8 μg/l, respectively. The recoveries of the selected analyte were in the range 61.9-109.0% with a precision of <8.2% (relative standard deviation (RSD)) for PAT and in the range 50.8-98.0% with a precision of <10.0% (RSD) for 5-HMF. The validated procedure was successfully applied for the analysis of PAT and 5-HMF in beverages from retail shops.


Sign in / Sign up

Export Citation Format

Share Document