The Genetic and Epigenetic Effects of 5-Azacytidine and its Major Breakdown Product Guanylurea

2015 ◽  
Vol 1 (1) ◽  
pp. 28-36 ◽  
Author(s):  
Katarzyna Lamparska ◽  
Steven Smith
2007 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
James W. Putney

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.


1980 ◽  
Vol 43 (02) ◽  
pp. 099-103 ◽  
Author(s):  
J M Whaun ◽  
P Lievaart ◽  

SummaryBlood from normal full term infants, mothers and normal adults was collected in citrate. Citrated platelet-rich plasma was prelabelled with 3H-adenine and reacted with release inducers, collagen and adrenaline. Adenine nucleotide metabolism, total adenine nucleotide levels and changes in sizes of these pools were determined in platelets from these three groups of subjects.At rest, the platelet of the newborn infant, compared to that of the mother and normal adult, possessed similar amounts of adenosine triphosphate (ATP), 4.6 ± 0.2 (SD), 5.0 ± 1.1, 4.9 ± 0.6 µmoles ATP/1011 platelets respectively, and adenosine diphosphate (ADP), 2.4 ± 0.7, 2.8 ± 0.6, 3.0 ± 0.3 umoles ADP/1011 platelets respectively. However the marked elevation of specific radioactivity of ADP and ATP in these resting platelets indicated the platelet of the neonate has decreased adenine nucleotide stores.In addition to these decreased stores of adenine nucleotides, infant platelets showed significantly impaired release of ADP and ATP on exposure to collagen. The release of ADP in infants, mothers, and other adults was 0.9 ± 0.5 (SD), 1.5 ± 0.5, 1.5 ± 0.1 umoles/1011 platelets respectively; that of ATP was 0.6 ± 0.3, 1.0 ± 0.1,1.3 ± 0.2 µmoles/1011 platelets respectively. With collagen-induced release, platelets of newborn infants compared to those of other subjects showed only slight increased specific radioactivities of adenine nucleotides over basal levels. The content of metabolic hypoxanthine, a breakdown product of adenine nucleotides, increased in both platelets and plasma in all subjects studied.In contrast, with adrenaline as release inducer, the platelets of the newborn infant showed no adenine nucleotide release, no change in total ATP and level of radioactive hypoxanthine, and minimal change in total ADP. The reason for this decreased adrenaline reactivity of infant platelets compared to reactivity of adult platelets is unknown.Infant platelets may have different membranes, with resulting differences in regulation of cellular processes, or alternatively, may be refractory to catecholamines because of elevated levels of circulating catecholamines in the newborn period.


1965 ◽  
Vol 14 (03/04) ◽  
pp. 490-499 ◽  
Author(s):  
S Niewiarowski ◽  
R Farbiszewski ◽  
A Popławski

SummaryIt has been found that fibrinogen breakdown product – antithrombin VI – is neutralized by the purified preparation of platelet factor 4, obtained by means of zinc acetate precipitation and DEAE chromatography column. It has been suggested that antiheparin activity of platelet factor 4 and its ability to neutralize antithrombin VI may be related to the same protein.The purified preparation of platelet factor 4 does not influence the fibrinogen – fibrin conversion by thrombin. This means that platelet factor 2 and platelet factor 4 are not the same substance.Crude platelet extracts neutralize antithrombin III and V. However, the purified product did not interferes with the action of these antithrombins.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2954
Author(s):  
Justyna Gorzkiewicz ◽  
Grzegorz Bartosz ◽  
Izabela Sadowska-Bartosz

Phytoestrogens are naturally occurring non-steroidal phenolic plant compounds. Their structure is similar to 17-β-estradiol, the main female sex hormone. This review offers a concise summary of the current literature on several potential health benefits of phytoestrogens, mainly their neuroprotective effect. Phytoestrogens lower the risk of menopausal symptoms and osteoporosis, as well as cardiovascular disease. They also reduce the risk of brain disease. The effects of phytoestrogens and their derivatives on cancer are mainly due to the inhibition of estrogen synthesis and metabolism, leading to antiangiogenic, antimetastatic, and epigenetic effects. The brain controls the secretion of estrogen (hypothalamus-pituitary-gonads axis). However, it has not been unequivocally established whether estrogen therapy has a neuroprotective effect on brain function. The neuroprotective effects of phytoestrogens seem to be related to both their antioxidant properties and interaction with the estrogen receptor. The possible effects of phytoestrogens on the thyroid cause some concern; nevertheless, generally, no serious side effects have been reported, and these compounds can be recommended as health-promoting food components or supplements.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Trejo Banos ◽  
Daniel L. McCartney ◽  
Marion Patxot ◽  
Lucas Anchieri ◽  
Thomas Battram ◽  
...  

Abstract Linking epigenetic marks to clinical outcomes improves insight into molecular processes, disease prediction, and therapeutic target identification. Here, a statistical approach is presented to infer the epigenetic architecture of complex disease, determine the variation captured by epigenetic effects, and estimate phenotype-epigenetic probe associations jointly. Implicitly adjusting for probe correlations, data structure (cell-count or relatedness), and single-nucleotide polymorphism (SNP) marker effects, improves association estimates and in 9,448 individuals, 75.7% (95% CI 71.70–79.3) of body mass index (BMI) variation and 45.6% (95% CI 37.3–51.9) of cigarette consumption variation was captured by whole blood methylation array data. Pathway-linked probes of blood cholesterol, lipid transport and sterol metabolism for BMI, and xenobiotic stimuli response for smoking, showed >1.5 times larger associations with >95% posterior inclusion probability. Prediction accuracy improved by 28.7% for BMI and 10.2% for smoking over a LASSO model, with age-, and tissue-specificity, implying associations are a phenotypic consequence rather than causal.


Epigenomics ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 341-358 ◽  
Author(s):  
Silvia M Sirchia ◽  
Alice Faversani ◽  
Davide Rovina ◽  
Maria V Russo ◽  
Leda Paganini ◽  
...  

2014 ◽  
Vol 104 (4) ◽  
pp. 480-485 ◽  
Author(s):  
M.A. Mirhosseini ◽  
J.P. Michaud ◽  
M.A. Jalali ◽  
M. Ziaaddini

AbstractComponents of male seminal fluids are known to stimulate fecundity and fertility in females of numerous insect species and paternal effects on offspring phenotype are also known, but no studies have yet demonstrated links between male effects on female reproduction and those on progeny phenotype. In separate laboratory experiments employing 10-day-old virgin females ofCheilomenes sexmaculata(F.), we varied male age and mating history to manipulate levels of male allomones and found that the magnitude of paternal effects on progeny phenotype was correlated with stimulation of female reproduction. Older virgin males remained in copula longer than younger ones, induced higher levels of female fecundity, and sired progeny that developed faster to yield heavier adults. When male age was held constant (13 days), egg fertility declined as a function of previous male copulations, progeny developmental times increased, and the adult weight of daughters declined. These results suggest that male epigenetic effects on progeny phenotype act in concert with female reproductive stimulation; both categories of effects increased as a consequence of male celibacy (factor accumulation), and diminished as a function of previous matings (factor depletion). Male factors that influence female reproduction are implicated in sexual conflict and parental effects may extend this conflict to offspring phenotype. Whereas mothers control the timing of oviposition events and can use maternal effects to tailor progeny phenotypes to prevailing or anticipated conditions, fathers cannot. Since females remate and dilute paternity in polyandrous systems, paternal fitness will be increased by linking paternal effects to female fecundity stimulation, so that more benefits accrue to the male's own progeny.


Sign in / Sign up

Export Citation Format

Share Document